# Ramsey Theory on Infinite Structures

# Natasha Dobrinen University of Notre Dame

ASL North American Annual Meeting UC Irvine, March 25–29, 2023

With grateful acknowledgment of research support from NSF grants DMS-1301665, 1600781, 1901753

# Outline: Day 1

- I. Ramsey Theory on Sets
- II. Ramsey Theory on the Rationals
- III. Structural Ramsey Theory and Big Ramsey Degrees
- IV. First 3 Ingredients of a Big Ramsey Degree
  - (a) Enumerated structures and their coding trees of 1-types
  - (b) Diagonal Antichains
  - (c) Passing Numbers
  - V. The Halpern-Läuchli Theorem and Harrington's 'forcing proof'

# Outline: Day 2

- I. Big Ramsey Degree Characterizations and Methods
  - (a) Q, Rado, unrestricted: Milliken's Strong Tree Theorem
  - (b) SDAP<sup>+</sup> and FAP Structures: Forcing on Coding Trees
  - (c) Generic Poset: Parameter Words
- II. Infinite-dimensional Ramsey Theory on  $\omega$
- III. Infinite-dimensional Structural Ramsey Theory
- IV. More Directions

I. Ramsey Theory on Sets

## Theorem (Finite Pigeonhole Principle)

For m < n, if n pigeons are placed into m holes, then at least two pigeons are in the same hole.

#### Theorem (Finite Pigeonhole Principle)

For m < n, if n pigeons are placed into m holes, then at least two pigeons are in the same hole.



Figure: 10 pigeons in 9 holes

## Theorem (Finite Pigeonhole Principle)

For m < n, if n pigeons are placed into m holes, then at least two pigeons are in the same hole.

## Theorem (Infinite Pigeonhole Principle)

If infinitely many marbles are placed into finitely many buckets, then some bucket contains infinitely many marbles.

## Theorem (Finite Pigeonhole Principle)

For m < n, if n pigeons are placed into m holes, then at least two pigeons are in the same hole.

## Theorem (Infinite Pigeonhole Principle)

Given a coloring of the natural numbers into finitely many colors, at least one color class is infinite.

- 2 3 4 5 6 7 8







## Theorem (Finite Ramsey Theorem)

For m < n and  $2 \le r$ , there is a p large enough so that for any coloring  $\chi : [p]^m \to r$ , there is an  $N \subseteq [p]^n$  such that  $\chi$  takes one color on  $[N]^m$ .

## Theorem (Finite Ramsey Theorem)

For m < n and  $2 \le r$ , there is a p large enough so that for any coloring  $\chi : [p]^m \to r$ , there is an  $N \subseteq [p]^n$  such that  $\chi$  takes one color on  $[N]^m$ .

Example: m = r = 2, n = 3, p = 6.



## Theorem (Finite Ramsey Theorem)

For m < n and  $2 \le r$ , there is a p large enough so that for any coloring  $\chi : [p]^m \to r$ , there is an  $N \subseteq [p]^n$  such that  $\chi$  takes one color on  $[N]^m$ .

Example: m = r = 2, n = 3, p = 6.



## Theorem (Infinite Ramsey Theorem)

Given m, r and a coloring  $\chi : [\mathbb{N}]^m \to r$ , there is an infinite subset  $N \subseteq \mathbb{N}$  such that  $\chi$  takes one color on  $[N]^m$ .

## Theorem (Infinite Ramsey Theorem)

Given m, r and a coloring  $\chi : [\mathbb{N}]^m \to r$ , there is an infinite subset  $N \subseteq \mathbb{N}$  such that  $\chi$  takes one color on  $[N]^m$ .

Example: m = r = 2.



## Theorem (Infinite Ramsey Theorem)

Given m, r and a coloring  $\chi : [\mathbb{N}]^m \to r$ , there is an infinite subset  $N \subseteq \mathbb{N}$  such that  $\chi$  takes one color on  $[N]^m$ .

Example: m = r = 2.



## Theorem (Infinite Ramsey Theorem)

Given m, r and a coloring  $\chi: [\mathbb{N}]^m \to r$ , there is an infinite subset  $N \subseteq \mathbb{N}$  such that  $\chi$  takes one color on  $[N]^m$ .

#### Structural interpretations:

- coloring edges in a complete *m*-regular hypergraph on infinitely many vertices
- coloring linear orders of size m inside  $(\mathbb{N}, <)$

Which infinite structures carry analogues of Ramsey's Theorem?

II. Ramsey Theory on the Rationals

•  $(\mathbb{Q}, <)$  has a Pigeonhole Principle. (indivisible)

- $(\mathbb{Q}, <)$  has a Pigeonhole Principle. (indivisible)
- Ramsey's Theorem fails for pairs of rationals. (Sierpiński, 1933)

- $(\mathbb{Q}, <)$  has a Pigeonhole Principle. (indivisible)
- Ramsey's Theorem fails for pairs of rationals. (Sierpiński, 1933)

Key Idea: Enumerate  $\mathbb{Q}$  as  $\langle q_0, q_1, q_2, \ldots \rangle$ 

Define a coloring: for 
$$i < j$$
,  $c(\{q_i, q_j\}) = \begin{cases} \text{red} & \text{if } q_i < q_j \\ \text{blue} & \text{if } q_j < q_i \end{cases}$ 

- $(\mathbb{Q}, <)$  has a Pigeonhole Principle. (indivisible)
- Ramsey's Theorem fails for pairs of rationals. (Sierpiński, 1933)

Key Idea: Enumerate  $\mathbb{Q}$  as  $\langle q_0, q_1, q_2, \ldots \rangle$ 

Define a coloring: for 
$$i < j$$
,  $c(\{q_i, q_j\}) = \begin{cases} \text{red} & \text{if } q_i < q_j \\ \text{blue} & \text{if } q_j < q_i \end{cases}$ 

These patterns are unavoidable.

- $(\mathbb{Q}, <)$  has a Pigeonhole Principle. (indivisible)
- Ramsey's Theorem fails for pairs of rationals. (Sierpiński, 1933)

Key Idea: Enumerate  $\mathbb{Q}$  as  $\langle q_0, q_1, q_2, \ldots \rangle$ 

Define a coloring: for 
$$i < j$$
,  $c(\{q_i, q_j\}) = \begin{cases} \text{red} & \text{if } q_i < q_j \\ \text{blue} & \text{if } q_j < q_i \end{cases}$ 

These patterns are unavoidable.

- $(\mathbb{Q}, <)$  has a Pigeonhole Principle. (indivisible)
- Ramsey's Theorem fails for pairs of rationals. (Sierpiński, 1933)

Key Idea: Enumerate  $\mathbb{Q}$  as  $\langle q_0, q_1, q_2, \ldots \rangle$ 

Define a coloring: for 
$$i < j$$
,  $c(\{q_i, q_j\}) = \begin{cases} \text{red} & \text{if } q_i < q_j \\ \text{blue} & \text{if } q_j < q_i \end{cases}$ 

These patterns are unavoidable.

# Coloring Finite Sets of Rationals

## Theorem (D. Devlin, 1979)

Given m, if  $[\mathbb{Q}]^m$  is colored by finitely many colors, then there is a subcopy  $\mathbb{Q}' \subseteq \mathbb{Q}$  forming a dense linear order such that  $[\mathbb{Q}']^m$  take no more than  $C_{2m-1}(2m-1)!$  colors. This bound is optimal.

| m | Bound |
|---|-------|
| 1 | 1     |
| 2 | 2     |
| 3 | 16    |
| 4 | 272   |

$$C_i$$
 is from  $an(x) = \sum_{i=0}^{\infty} C_i x^i$ 

- Galvin (1968) The bound for pairs is two.
- Laver (1969) Upper bounds for all finite sets.

Which other infinite structures carry analogues of Ramsey's Theorem?

# Background: Finite Structural Ramsey Theory

For structures A, B, write  $A \leq B$  iff A embeds into B.

 $\binom{B}{A}$  denotes the set of all copies of **A** in **B**.

A class K of finite structures has the Ramsey Property if given  $A \leq B$  in K and r, there is  $C \in K$  so that

 $\forall \chi: \tbinom{\textbf{C}}{\textbf{A}} \to r \quad \exists \textbf{B}' \in \tbinom{\textbf{C}}{\textbf{B}}, \ \chi \upharpoonright \tbinom{\textbf{B}'}{\textbf{A}} \text{ is constant.}$ 

# Background: Finite Structural Ramsey Theory

For structures A, B, write  $A \leq B$  iff A embeds into B.

 $\binom{B}{A}$  denotes the set of all copies of **A** in **B**.

A class  $\mathcal{K}$  of finite structures has the Ramsey Property if given  $\mathbf{A} \leq \mathbf{B}$  in  $\mathcal{K}$  and r, there is  $\mathbf{C} \in \mathcal{K}$  so that

$$\forall \chi: \tbinom{\textbf{C}}{\textbf{A}} \to r \quad \exists \textbf{B}' \in \tbinom{\textbf{C}}{\textbf{B}}, \ \chi \upharpoonright \tbinom{\textbf{B}'}{\textbf{A}} \text{ is constant.}$$

Lots of work done! (e.g., Nešetřil-Rödl, Hubička-Nešetřil)

**Examples:** The classes of **finite** linear orders, ordered graphs, ordered k-clique-free graphs, ordered k-regular hypergraphs, partial orders with linear extension,...

# Passing Remark.

Take the orders away and you get small Ramsey degrees.



# Universal and homogeneous structures.

Let  $\mathcal K$  be a Fraissé class of finite structures.

A structure **S** is **universal** for  $\mathcal{K}$  if each structure in  $\mathcal{K}$  embeds into **S**.

## Universal and homogeneous structures.

Let K be a Fraïssé class of finite structures.

A structure **S** is **universal** for  $\mathcal{K}$  if each structure in  $\mathcal{K}$  embeds into **S**.

An infinite structure **S** is **homogeneous** if each isomorphism between two finite substructures extends to an automorphism of **S**.

## Universal and homogeneous structures.

Let K be a Fraïssé class of finite structures.

A structure **S** is **universal** for  $\mathcal{K}$  if each structure in  $\mathcal{K}$  embeds into **S**.

An infinite structure **S** is **homogeneous** if each isomorphism between two finite substructures extends to an automorphism of **S**.

- Fraı̈ssé correspondence between  $\mathcal K$  and its limit  $\mathbf K$  being homogeneous and universal for  $\mathcal K$ .
- $\bullet$  Any two homogeneous structures which are universal for  ${\cal K}$  are isomorphic.

Let **K** be an infinite structure.

**K** has **finite big Ramsey degrees** if for each finite  $\mathbf{A} \leq \mathbf{K}$ ,  $\exists T$  such that  $\forall r, \forall \ \chi : \binom{\mathbf{K}}{\mathbf{A}} \to r$ ,  $\exists \mathbf{K}' \in \binom{\mathbf{K}}{\mathbf{K}}$  such that  $|\chi \upharpoonright \binom{\mathbf{K}'}{\mathbf{A}}| \leq T$ .

Let **K** be an infinite structure.

**K** has **finite big Ramsey degrees** if for each finite  $\mathbf{A} \leq \mathbf{K}$ ,  $\exists T$  such that  $\forall r, \forall \ \chi : \binom{\mathbf{K}}{\mathbf{A}} \to r$ ,  $\exists \mathbf{K}' \in \binom{\mathbf{K}}{\mathbf{K}}$  such that  $|\chi \upharpoonright \binom{\mathbf{K}'}{\mathbf{A}}| \leq T$ .

The **big Ramsey degree** of **A** in **K**, T(A), is the least such T.

Let **K** be an infinite structure.

**K** has **finite big Ramsey degrees** if for each finite  $\mathbf{A} \leq \mathbf{K}$ ,  $\exists \mathcal{T}$  such that  $\forall r, \ \forall \ \chi : \binom{\mathbf{K}}{\mathbf{A}} \to r$ ,  $\exists \mathbf{K}' \in \binom{\mathbf{K}}{\mathbf{K}}$  such that  $|\chi \upharpoonright \binom{\mathbf{K}'}{\mathbf{A}}| \leq \mathcal{T}$ .

The **big Ramsey degree** of **A** in **K**, T(A), is the least such T.

Let K be a Fraïssé class with limit K.

• **K** has the exact analogue of Ramsey's Theorem iff  $T(\mathbf{A}) = 1$  for all  $\mathbf{A} \in \mathcal{K}$ .

Let **K** be an infinite structure.

**K** has **finite big Ramsey degrees** if for each finite  $\mathbf{A} \leq \mathbf{K}$ ,  $\exists \mathcal{T}$  such that  $\forall r, \ \forall \ \chi : \binom{\mathbf{K}}{\mathbf{A}} \to r$ ,  $\exists \mathbf{K}' \in \binom{\mathbf{K}}{\mathbf{K}}$  such that  $|\chi \upharpoonright \binom{\mathbf{K}'}{\mathbf{A}}| \leq \mathcal{T}$ .

The **big Ramsey degree** of **A** in **K**, T(A), is the least such T.

Let K be a Fraïssé class with limit K.

- ullet K has the exact analogue of Ramsey's Theorem iff  $\mathcal{T}(\mathbf{A})=1$  for all  $\mathbf{A}\in\mathcal{K}.$
- Except for vertex colorings, this usually fails: If  $|\operatorname{Aut}(\mathbf{K})| > 1$ , then  $\exists \mathbf{A} \in \mathcal{K}$  with  $T(\mathbf{A}) > 1$ , or infinite. (Hjorth 2008)

#### Topological Dynamics and Ramsey Theory

#### Theorem (Kechris–Pestov–Todorcevic, 2005)

A Fraïssé class K of finite structures has the Ramsey property if and only if Aut(K) is extremely amenable, where K is the homogeneous structure universal for K.

### Topological Dynamics and Ramsey Theory

#### Theorem (Kechris–Pestov–Todorcevic, 2005)

A Fraïssé class K of finite structures has the Ramsey property if and only if Aut(K) is extremely amenable, where K is the homogeneous structure universal for K.

#### Theorem (Zucker, 2019)

If K has a big Ramsey structure, then Aut(K) admits a unique universal completion flow.

## Big Ramsey Degree results, a sampling

- 1933.  $T(Pairs, \mathbb{Q}) \geq 2$ . (Sierpiński)
- 1975.  $T(Edge, \mathcal{R}) \geq 2$ . (Erdős, Hajnal, Pósa)
- 1979. ( $\mathbb{Q}$ , <): All BRD computed. (D. Devlin)
- 1986.  $T(Vertex, \mathcal{H}_3) = 1$ . (Komjáth, Rödl)
- 1989.  $T(Vertex, \mathcal{H}_n) = 1$ . (El-Zahar, Sauer)
- 1996.  $T(Edge, \mathcal{R}) = 2$ . (Pouzet, Sauer)
- 1998.  $T(Edge, \mathcal{H}_3) = 2$ . (Sauer)
- 2006, 2008. The Rado graph: All BRD characterized; computed. (Laflamme, Sauer, Vuksanović); (J. Larson)
- 2010. Dense Local Order S(2) and  $\mathbb{Q}_n$ : All BRD computed. (Laflamme, Nguyen Van Thé, Sauer)

#### Developments via coding trees and forcing (arxiv dates)

- 2017. Triangle-free Henson graphs: Very good Bounds. Exact bounds via small tweak in 2020. (D.)
- 2019. k-clique-free Henson graphs: Upper Bounds. (D.)
- 2020. Finitely constrained binary FAP: Upper Bounds. (Zucker)
- 2020. Exact BRD for binary (Part I) and indivisibility for higher arity (Part II) SDAP<sup>+</sup> structures. (Coulson, D., Patel)
- 2021. Binary rel. Forb $(\mathcal{F})$ : Exact BRD. (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker)
- Also some  $\infty$ -dimensional Ramsey theorems (tomorrow).

Why forcing?



Why forcing? Harrington's forcing proof of Halpern-Läuchli. (later)

Why coding trees?



Why coding trees? (soon)

#### Developments not using forcing (arxiv dates)

- 2018. Certain homogeneous metric spaces: Upper Bounds. (Mašulović) category theory.
- 2019. 3-uniform hypergraphs: Upper Bounds. (Balko, Chodounský, Hubička, Konečný, Vena) Milliken Theorem.
- 2020. Circular directed graphs: Exact BRD Computed. (Dasilva Barbosa) category theory.
- 2020. Homogeneous partial order: Upper Bounds. (Hubička)
   Ramsey space of parameter words. First non-forcing proof for H<sub>3</sub>.
- 2021. Homogenous graphs with forbidden cycles (metric spaces): Upper Bounds. (Balko, Chodounský, Hubička, Konečný, Nešetřil, Vena) parameter words.
- 2023. Homogeneous partial order: Exact BRD. (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker) parameter words.
- 2023+. Certain Forb( $\mathcal{F}$ ) binary and higher arities. (BCDHKNVZ) New methods.
- And more...

What is a big Ramsey degree?

#### What is a big Ramsey degree?

We give a current (non-historical) perspective today.

IV. First 3 Ingredients of a Big Ramsey Degree

#### First Ingredient: Enumerating the Universe

Enumerating the universe of **K** in order-type  $\omega$  induces a coding tree of 1-types.

#### First Ingredient: Enumerating the Universe

Enumerating the universe of **K** in order-type  $\omega$  induces a coding tree of 1-types.

All substructures of K have some memory of this enumeration.

### First Ingredient: Enumerating the Universe

Enumerating the universe of **K** in order-type  $\omega$  induces a coding tree of 1-types.

All substructures of K have some memory of this enumeration.

Let **K** be a homogeneous structure with vertices  $\langle v_i : i < \omega \rangle$ .

Let 
$$\mathbf{K}_n = \mathbf{K} \upharpoonright \{v_i : i < n\}$$
.

This **coding tree of 1-types**  $\mathbb{S}(\mathbf{K})$  is the set of all (quantifier free) complete 1-types over  $\mathbf{K}_n$ ,  $n < \omega$ , along with a function  $c : \omega \to \mathbb{S}(\mathbf{K})$  where c(n) is the 1-type of  $v_n$  over  $\mathbf{K}_n$ . The tree-ordering is inclusion.











































#### Second Ingredient: Diagonal Antichains

An antichain is diagonal if any two nodes in its meet closure have different lengths.



### Devlin's Diagonal Antichains and Exact Degrees



### Devlin's Diagonal Antichains and Exact Degrees

#### Theorem (Devlin, 1979)

For each  $k \ge 1$ , given any coloring of  $[\mathbb{Q}]^k$  into finitely many colors, there is a subset  $\mathbb{Q}' \subseteq \mathbb{Q}$  forming a dense linear order such that the k-element subsets of  $\mathbb{Q}'$  take at most  $T(k) = (2k-1)!c_{2k-1}$  colors, where  $c_n$  is from the tangent function  $\tan(x) = \sum_{n=0}^{\infty} c_n x^n$ .

# Devlin types for triples of Rationals





### Third Ingredient for Rado graph (and other FAP classes)

For the Rado graph, a Third Ingredient is involved in big Ramsey degrees:

passing types encode relations as a longer coding node 'passes by' a shorter one.

### Coding Tree of 1-types for the Rado Graph, $\mathcal{R}$



### Coding Tree of 1-types for the Rado Graph, $\mathcal{R}$



## Diagonal Antichain encoding the Rado graph



#### Big Ramsey degrees of the Rado graph

#### Theorem (Laflamme-Sauer-Vuksanovic, 2006)

The big Ramsey degree of a finite graph **A** inside the Rado graph is exactly the number of diagonal antichains encoding a copy of **A**.

Moreover, the same holds for all unrestricted structures in finitely many binary relations.

#### Big Ramsey degrees of the Rado graph

#### Theorem (Laflamme-Sauer-Vuksanovic, 2006)

The big Ramsey degree of a finite graph **A** inside the Rado graph is exactly the number of diagonal antichains encoding a copy of **A**.

Moreover, the same holds for all unrestricted structures in finitely many binary relations.

#### Examples of other unrestricted structures:

- The random directed graph
- Superposition of the Rado graph and a random directed graph

# Diaries for BRD of Edges and Non-edges in $\ensuremath{\mathcal{R}}$







Non-Edges

















#### Remarks

• Classic methods for finding upper bounds for big Ramsey degrees in  $\mathbb Q$  and Rado graph use Milliken's Ramsey Theorem for Trees. (tomorrow)

• The Halpern-Läuchli Theorem forms the pigeonhole for the proof of Milliken's Theorem.

This aided the development of BRD for free amalgamation classes with forbidden substructures.



#### Halpern-Läuchli Theorem - strong tree version

Notation:

$$\bigotimes_{i < d} T_i := \bigcup_{n < \omega} \prod_{i < d} T_i(n)$$

#### Theorem (Halpern-Läuchli, 1966)

Let  $T_i \subseteq \omega^{<\omega}$ , i < d, be finitely branching trees with no terminal nodes. Given a coloring  $\chi : \bigotimes_{i < d} T_i \to 2$ , there are strong subtrees  $S_i \leq T_i$  with nodes of the same lengths such that  $\chi$  is constant on  $\bigotimes_{i < d} S_i$ .

#### Halpern-Läuchli Theorem - strong tree version

$$\bigotimes_{i < d} T_i := \bigcup_{n < \omega} \prod_{i < d} T_i(n)$$

#### Theorem (Halpern-Läuchli, 1966)

Let  $T_i \subseteq \omega^{<\omega}$ , i < d, be finitely branching trees with no terminal nodes. Given a coloring  $\chi : \bigotimes_{i < d} T_i \to 2$ , there are strong subtrees  $S_i \leq T_i$  with nodes of the same lengths such that  $\chi$  is constant on  $\bigotimes_{i < d} S_i$ .

HL was distilled as a key lemma in the proof that the Boolean Prime Ideal Theorem is strictly weaker than the Axiom of Choice over ZF. (Halpern-Lévy, 1971)



























)



0



 $S_0$ 



20



0



00



0



 $\bar{p}_0$ 

#### An Application of HL to Products of Rationals

#### Theorem (Laver, 1984)

Given  $d < \omega$  and a coloring of  $\mathbb{Q}^d$  into finitely many colors, there are  $X_i \subseteq \mathbb{Q}$ , i < d, isomorphic to  $\mathbb{Q}$  such that  $X_0 \times \cdots \times X_{d-1}$  takes at most d! many colors.

#### Harrington's 'Forcing' Proof of Halpern-Läuchli Theorem

Harrington devised a proof of the Halpern–Läuchli Theorem that uses forcing methods to do countably many searches for finite objects.

This is NOT an absoluteness proof; no generic extensions involved.

### Harrington's 'Forcing' Proof of Halpern-Läuchli Theorem

Harrington devised a proof of the Halpern–Läuchli Theorem that uses forcing methods to do countably many searches for finite objects.

This is NOT an absoluteness proof; no generic extensions involved.

#### Theorem (Erdős-Rado)

For  $r < \omega$  and  $\mu$  an infinite cardinal,  $\beth_r(\mu)^+ \to (\mu^+)^{r+1}_{\mu}$ .

### Harrington's 'Forcing' Proof of Halpern-Läuchli Theorem

Harrington devised a proof of the Halpern–Läuchli Theorem that uses forcing methods to do countably many searches for finite objects.

This is NOT an absoluteness proof; no generic extensions involved.

#### Theorem (Erdős-Rado)

For  $r < \omega$  and  $\mu$  an infinite cardinal,  $\beth_r(\mu)^+ \to (\mu^+)^{r+1}_{\mu}$ .

Thanks to Laver for an outline of this proof in 2011!

### Harrington's 'Forcing' Proof of Halpern-Läuchli

Fix  $d \ge 2$  and let  $T_i = 2^{<\omega}$  (i < d) be finitely branching trees with no terminal nodes. Fix a coloring  $c : \bigotimes_{i < d} T_i \to 2$ .

Let 
$$\kappa = \beth_{2d}$$
. Then  $\kappa \to (\aleph_1)^{2d}_{\aleph_0}$ .

 $\mathbb{P} =$ Cohen forcing adding  $\kappa$  new branches to each tree  $T_i$ , i < d.

### Harrington's 'Forcing' Proof of Halpern-Läuchli

Fix  $d \ge 2$  and let  $T_i = 2^{<\omega}$  (i < d) be finitely branching trees with no terminal nodes. Fix a coloring  $c : \bigotimes_{i < d} T_i \to 2$ .

Let 
$$\kappa = \beth_{2d}$$
. Then  $\kappa \to (\aleph_1)^{2d}_{\aleph_0}$ .

 $\mathbb{P} =$ Cohen forcing adding  $\kappa$  new branches to each tree  $T_i$ , i < d.

 $\mathbb{P}$  is the set of functions p of the form

$$p: d \times \vec{\delta}_p \to \bigcup_{i \leq d} T_i \upharpoonright \ell_p$$

where  $\vec{\delta}_p \in [\kappa]^{<\omega}$ ,  $\ell_p < \omega$ , and  $\forall i < d$ ,  $\{p(i, \delta) : \delta \in \vec{\delta}_p\} \subseteq T_i \upharpoonright \ell_p$ .

$$q \leq p$$
 iff  $\ell_q \geq \ell_p$ ,  $\vec{\delta}_q \supseteq \vec{\delta}_p$ , and  $\forall (i, \delta) \in d \times \vec{\delta}_p$ ,  $q(i, \delta) \supseteq p(i, \delta)$ .

## Harrington's 'Forcing' Proof: Set-up for the Ctbl Coloring

For i < d,  $\alpha < \kappa$ ,  $\dot{b}_{i,\alpha}$  denotes the  $\alpha$ -th generic branch in  $T_i$ .

Let  $\dot{\mathcal{U}}$  be a  $\mathbb{P}$ -name for a non-principal ultrafilter on  $\omega$ .

For 
$$\vec{\alpha} = \langle \alpha_0, \dots, \alpha_{d-1} \rangle \in [\kappa]^d$$
, let  $\dot{b}_{\vec{\alpha}} := \langle \dot{b}_{0,\alpha_0}, \dots, \dot{b}_{d-1,\alpha_{d-1}} \rangle$ .

For  $\vec{\alpha} \in [\kappa]^d$ , take some  $p_{\vec{\alpha}} \in \mathbb{P}$  with  $\vec{\alpha} \subseteq \vec{\delta}_{p_{\vec{\alpha}}}$  such that

- $p_{\vec{\alpha}}$  decides an  $\varepsilon_{\vec{\alpha}} \in 2$  s.t.  $p_{\vec{\alpha}} \Vdash c(\dot{b}_{\vec{\alpha}} \upharpoonright \ell) = \varepsilon_{\vec{\alpha}}$  for  $\dot{\mathcal{U}}$  many  $\ell$ ,
- $c(\{p_{\vec{\alpha}}(i,\alpha_i): i < d\}) = \varepsilon_{\vec{\alpha}}.$

## Harrington's 'Forcing' Proof: The Countable Coloring

For 
$$\vec{\theta} \in [\kappa]^{2d}$$
 and  $\iota : 2d \to 2d$ , let

$$\vec{\alpha} = (\theta_{\iota(0)}, \theta_{\iota(2)}, \dots, \theta_{\iota(2d-2))})$$
 and  $\vec{\beta} = (\theta_{\iota(1)}, \theta_{\iota(3)}, \dots, \theta_{\iota(2d-1)}).$ 

Define 
$$f(\iota, \vec{\theta}) = \langle \iota, \varepsilon_{\vec{\alpha}}, k_{\vec{\alpha}}, \langle \langle p_{\vec{\alpha}}(i, \delta_{\vec{\alpha}}(j)) : j < k_{\vec{\alpha}} \rangle : i < d \rangle,$$
  
 $\langle \langle i, j \rangle : i < d, j < k_{\vec{\alpha}}, \delta_{\vec{\alpha}}(j) = \alpha_i \rangle,$   
 $\langle \langle j, k \rangle : j < k_{\vec{\alpha}}, k < k_{\vec{\beta}}, \delta_{\vec{\alpha}}(j) = \delta_{\vec{\beta}}(k) \rangle \rangle,$ 

where  $k_{\vec{\alpha}} = |\vec{\delta}_{p_{\vec{\alpha}}}|$ , and  $\langle \delta_{\vec{\alpha}}(j) : j < k_{\vec{\alpha}} \rangle$  enumerates  $\vec{\delta}_{p_{\vec{\alpha}}}$ .

## Harrington's 'Forcing' Proof: The Countable Coloring

For 
$$\vec{ heta} \in [\kappa]^{2d}$$
 and  $\iota: 2d o 2d$ , let

$$\vec{\alpha} = (\theta_{\iota(0)}, \theta_{\iota(2)}, \dots, \theta_{\iota(2d-2))})$$
 and  $\vec{\beta} = (\theta_{\iota(1)}, \theta_{\iota(3)}, \dots, \theta_{\iota(2d-1)}).$ 

Define 
$$f(\iota, \vec{\theta}) = \langle \iota, \varepsilon_{\vec{\alpha}}, k_{\vec{\alpha}}, \langle \langle p_{\vec{\alpha}}(i, \delta_{\vec{\alpha}}(j)) : j < k_{\vec{\alpha}} \rangle : i < d \rangle,$$
  
 $\langle \langle i, j \rangle : i < d, j < k_{\vec{\alpha}}, \delta_{\vec{\alpha}}(j) = \alpha_i \rangle,$   
 $\langle \langle j, k \rangle : j < k_{\vec{\alpha}}, k < k_{\vec{\beta}}, \delta_{\vec{\alpha}}(j) = \delta_{\vec{\beta}}(k) \rangle \rangle,$ 

where  $k_{\vec{lpha}} = |\vec{\delta}_{p_{\vec{lpha}}}|$ , and  $\langle \delta_{\vec{lpha}}(j) : j < k_{\vec{lpha}} \rangle$  enumerates  $\vec{\delta}_{p_{\vec{lpha}}}$ .

Define 
$$f(\vec{\theta}) = \langle f(\iota, \vec{\theta}) : \iota \in \mathcal{I} \rangle$$
.

### Harrington's 'Forcing' Proof: Set of compatible conditions

 $\kappa \to (\aleph_1)^{2d}_{\aleph_0}$  implies  $\exists H \in [\kappa]^{\aleph_1}$  homogeneous for f.

Take  $K_i \in [H]^{\aleph_0}$  where  $K_0 < \cdots < K_{d-1}$  and let  $K := \bigcup_{i < d} K_i$ .

**Main Lemma.**  $\{p_{\vec{\alpha}} : \vec{\alpha} \in \prod_{i < d} K_i\}$  is compatible.

# Harrington's 'Forcing' Proof: The Construction (d=2)



#### Remarks

• Ideas in this proof plus the idea of starting with coding trees of 1-types (rather than regularly branching trees) opened the door to proving the Henson graphs have finite big Ramsey degrees, which inspired an expansion of results and methods.

#### Remarks

- Ideas in this proof plus the idea of starting with coding trees of 1-types (rather than regularly branching trees) opened the door to proving the Henson graphs have finite big Ramsey degrees, which inspired an expansion of results and methods.
- In their AMS Memoirs book (2023), Anglès d'Auriac, Cholak, Dzhafarov, Monin, and Patey, the Halpern-Läuchli Theorem is computably true and admits strong cone avoidance.