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Qutline: Day 1

. Ramsey Theory on Sets
. Ramsey Theory on the Rationals

. Structural Ramsey Theory and Big Ramsey Degrees

First 3 Ingredients of a Big Ramsey Degree

(a) Enumerated structures and their coding trees of 1-types
(b) Diagonal Antichains

(c) Passing Numbers

The Halpern-Lauchli Theorem and Harrington's ‘forcing proof’
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Qutline: Day 2

. Big Ramsey Degree Characterizations and Methods

(a) Q, Rado, unrestricted: Milliken's Strong Tree Theorem
(b) SDAP* and FAP Structures: Forcing on Coding Trees
(c) Generic Poset: Parameter Words

. Infinite-dimensional Ramsey Theory on w

. Infinite-dimensional Structural Ramsey Theory

More Directions
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|. Ramsey Theory on Sets

Natasha Dobrinen Infinite Structural Ramsey Theory Notre Dame 4 /50



Pigeonhole Principle

Theorem (Finite Pigeonhole Principle)

For m < n, if n pigeons are placed into m holes, then at least two
pigeons are in the same hole.
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Pigeonhole Principle

Theorem (Finite Pigeonhole Principle)

For m < n, if n pigeons are placed into m holes, then at least two
pigeons are in the same hole.

Figure: 10 pigeons in 9 holes
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Pigeonhole Principle

Theorem (Finite Pigeonhole Principle)

For m < n, if n pigeons are placed into m holes, then at least two
pigeons are in the same hole.

Theorem (Infinite Pigeonhole Principle)

If infinitely many marbles are placed into finitely many buckets, then
some bucket contains infinitely many marbles.
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Pigeonhole Principle

Theorem (Finite Pigeonhole Principle)

For m < n, if n pigeons are placed into m holes, then at least two
pigeons are in the same hole.

Theorem (Infinite Pigeonhole Principle)

Given a coloring of the natural numbers into finitely many colors, at
least one color class is infinite.

Natasha Dobrinen Infinite Structural Ramsey Theory Notre Dame 5/50



Ramsey's Theorems

Theorem (Finite Ramsey Theorem)

For m < n and 2 <'r, there is a p large enough so that for any

coloring x : [p]™ — r, there is an N C [p]" such that x takes one
color on [N]™.
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Ramsey's Theorems

Theorem (Finite Ramsey Theorem)

For m < n and 2 <'r, there is a p large enough so that for any
coloring x : [p]™ — r, there is an N C [p]" such that x takes one
color on [N]™.

Example: m=r=2,n=3, p=6.
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Ramsey's Theorems

Theorem (Infinite Ramsey Theorem)

Given m, r and a coloring x : [N]™ — r, there is an infinite subset
N C N such that x takes one color on [N]™.
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Ramsey's Theorems

Theorem (Infinite Ramsey Theorem)

Given m, r and a coloring x : [N]™ — r, there is an infinite subset
N C N such that x takes one color on [N]™.

Structural interpretations:

hyper
° coloringygftiges in a complete m-regular hypergraph on infinitely

many vertices

e coloring linear orders of size m inside (N, <)
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Which infinite structures carry

analogues of Ramsey's Theorem?
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[l. Ramsey Theory on the Rationals
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The Rationals as a Dense Linear Order

e (Q, <) has a Pigeonhole Principle. (indivisible)
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The Rationals as a Dense Linear Order

e (Q, <) has a Pigeonhole Principle. (indivisible)

e Ramsey's Theorem fails for pairs of rationals. (Sierpinski, 1933)
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The Rationals as a Dense Linear Order

e (Q, <) has a Pigeonhole Principle. (indivisible)

e Ramsey's Theorem fails for pairs of rationals. (Sierpinski, 1933)

Key Idea: Enumerate Q as (qo, g1, G2, - - -)

d ifg ‘
Define a coloring : for i < j, c({qi, q;}) = {rbe| !f ’ z ”
ue 1t q; <qj
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The Rationals as a Dense Linear Order

e (Q, <) has a Pigeonhole Principle. (indivisible)
e Ramsey's Theorem fails for pairs of rationals. (Sierpinski, 1933)

Key Idea: Enumerate Q as (qo, g1, G2, - - -)

d ifg :
Define a coloring : for i < j, c({qi, q;}) = {rbel !f q z q;
ve if gj < g

—3/2 -1 —1/2 0 1/2 3/4 1 3/2
(] o (] () e o o ]
Q2 ar 0 do 4 ds Qs aa

These patterns are unavoidable.
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The Rationals as a Dense Linear Order

e (Q, <) has a Pigeonhole Principle. (indivisible)
e Ramsey's Theorem fails for pairs of rationals. (Sierpinski, 1933)

Key Idea: Enumerate Q as (qo, g1, G2, - - -)

d ifg :
Define a coloring : for i < j, c({qi, q;}) = {rbel !f q z q;
ve if gj < g
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Coloring Finite Sets of Rationals

Theorem (D. Devlin, 1979)

Given m, if [Q]™ is colored by finitely many colors, then there is a
subcopy Q' C Q forming a dense linear order such that [Q']™ take no
more than Cy,—1(2m — 1)! colors. This bound is optimal.

m | Bound

; ; C; is from

3 16 tan(x) = ZTZO C,-Xi
4 272

e Galvin (1968) The bound for pairs is two.
e Laver (1969) Upper bounds for all finite sets.
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Which other infinite structures carry

analogues of Ramsey's Theorem?
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Background: Finite Structural Ramsey Theory

For structures A, B, write A < B iff A embeds into B.

(8) denotes the set of all copies of A in B.

A class K of finite structures has the Ramsey Property if given
A <Bin K and r, there is C € K so that

/

vy : (i) —r 3B € (g), X I (i) is constant.
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Background: Finite Structural Ramsey Theory

For structures A, B, write A < B iff A embeds into B.

(8) denotes the set of all copies of A in B.

A class K of finite structures has the Ramsey Property if given
A <Bin K and r, there is C € K so that

/

vy : (i) —r 3B € (g), X I (i) is constant.

Lots of work done! (e.g., NeZet¥il-Rodl, Hubi¢ka—Neset¥il)

Examples: The classes of finite linear orders, ordered graphs,
ordered k-clique-free graphs, ordered k-regular hypergraphs, partial
orders with linear extension,...
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Passing Remark.

Take the orders away and you get small Ramsey degrees.
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[I1. Structural Ramsey Theory and Big Ramsey Degrees
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Universal and homogeneous structures.

Let K be a Fraissé class of finite structures.

A structure S is universal for K if each structure in I embeds into S.
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Universal and homogeneous structures.

Let K be a Fraissé class of finite structures.

A structure S is universal for K if each structure in I embeds into S.

An infinite structure S is homogeneous if each isomorphism between
two finite substructures extends to an automorphism of S.
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Universal and homogeneous structures.

Let K be a Fraissé class of finite structures.

A structure S is universal for K if each structure in I embeds into S.

An infinite structure S is homogeneous if each isomorphism between
two finite substructures extends to an automorphism of S.

e Fraissé correspondence between K and its limit K being
homogeneous and universal for /C.

e Any two homogeneous structures which are universal for IC are
isomorphic.
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Infinite Structural Ramsey Theory

Let K be an infinite structure.

K has finite big Ramsey degrees if for each finite A < K, 3T such
that Vr, V x : (":) —r, K € (ﬁ) such that |y | ('Zl)| <T.
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Infinite Structural Ramsey Theory

Let K be an infinite structure.

K has finite big Ramsey degrees if for each finite A < K, 3T such
that Vr, V x : (":) —r, K € (ﬁ) such that |y | ('Zl)| <T.

The big Ramsey degree of A in K, T(A), is the least such T.

Let K be a Fraissé class with limit K.

e K has the exact analogue of Ramsey's Theorem iff T(A) =1 for all
AcKk.

e Except for vertex colorings, this usually fails: If |Aut(K)| > 1,
then 3A € K with T(A) > 1, or infinite. (Hjorth 2008)
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Topological Dynamics and Ramsey Theory

Theorem (Kechris—Pestov—Todorcevic, 2005)

A Fraissé class IC of finite structures has the Ramsey property if and
only if Aut(K) is extremely amenable, where K is the homogeneous
structure universal for K.
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Topological Dynamics and Ramsey Theory

Theorem (Kechris—Pestov—Todorcevic, 2005)

A Fraissé class IC of finite structures has the Ramsey property if and
only if Aut(K) is extremely amenable, where K is the homogeneous
structure universal for K.

Theorem (Zucker, 2019)

If K has a big Ramsey structure, then Aut(K) admits a unique
universal completion flow.
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Big Ramsey Degree results, a sampling

¢ 1933. T(Pairs, Q) > 2. (Sierpiriski)

e 1975. T(Edge, R) > 2. (Erdés, Hajnal, Pésa)
¢ 1979. (Q,<): All BRD computed. (D. Devlin)
e 1986. T(Vertex, H3) = 1. (Komjath, Rodl)

e 1989. T(Vertex, H,) = 1. (El-Zahar, Sauer)
e 1996. T(Edge, R) = 2. (Pouzet, Sauer)

e 1998. T(Edge, H3) = 2. (Sauer)

e 2006, 2008. The Rado graph: All BRD characterized; computed.
(Laflamme, Sauer, Vuksanovi¢); (J. Larson)

e 2010. Dense Local Order S(2) and Q,: All BRD computed.
(Laflamme, Nguyen Van Thé, Sauer)
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Developments via coding trees and forcing (arxiv dates)

@ 2017. Triangle-free Henson graphs: Very good Bounds.
Exact bounds via small tweak in 2020. (D.)

e 2019. k-clique-free Henson graphs: Upper Bounds. (D.)
e 2020. Finitely constrained binary FAP: Upper Bounds. (Zucker)

e 2020. Exact BRD for binary (Part 1) and indivisibility for higher
arity (Part Il) SDAP* structures. (Coulson, D., Patel)

e 2021. Binary rel. Forb(F): Exact BRD. (Balko, Chodounsky, D.,
Hubicka, Kone¢ny, Vena, Zucker)

e Also some oco-dimensional Ramsey theorems (tomorrow).
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Why forcing?

Natasha Dobrinen Infinite Structural Ramsey Theory Notre Dame 21/50



Why forcing? Harrington's forcing proof of Halpern-Lauchli. (later)
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Why forcing? Harrington's forcing proof of Halpern-Lauchli. (later)

Why coding trees?
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Why forcing? Harrington's forcing proof of Halpern-Lauchli. (later)

Why coding trees? (soon)
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Developments not using forcing (arxiv dates)

2018. Certain homogeneous metric spaces: Upper Bounds. (Magulovi¢)
category theory.

2019. 3-uniform hypergraphs: Upper Bounds. (Balko, Chodounsky,
Hubitka, Konegny, Vena) Milliken Theorem.

2020. Circular directed graphs: Exact BRD Computed. (Dasilva Barbosa)
category theory.

2020. Homogeneous partial order: Upper Bounds. (Hubitka)
Ramsey space of parameter words. First non-forcing proof for Hs.

2021. Homogenous graphs with forbidden cycles (metric spaces): Upper
Bounds. (Balko, Chodounsky, Hubitka, Konegny, NeZetfil, Vena) parameter
words.

2023. Homogeneous partial order: Exact BRD. (Balko, Chodounsky, D.,
Hubitka, Konetny, Vena, Zucker) parameter words.

2023+. Certain Forb(F) binary and higher arities. (BCDHKNVZ) New
methods.

And more...
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What is a big Ramsey degree?
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What is a big Ramsey degree?

We give a current (non-historical) perspective today.
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IV. First 3 Ingredients of a Big Ramsey Degree
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First Ingredient: Enumerating the Universe

Enumerating the universe of K in order-type w induces a
coding tree of 1-types.
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First Ingredient: Enumerating the Universe

Enumerating the universe of K in order-type w induces a
coding tree of 1-types.

All substructures of K have some memory of this enumeration.
Let K be a homogeneous structure with vertices (v; : i < w).

Let K, =K [ {v; : i < n}.

This coding tree of 1-types S(K) is the set of all (quantifier free)
complete 1-types over K,,, n < w, along with a function ¢ : w — S(K)

where ¢(n) is the 1-type of v, over K,. The tree-ordering is inclusion.
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Example: Coding Tree of 1-types for (Q, <)

[ ] [ ] [ J [ J [ J [ ]
4 gs do as 01 Qa
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Example: Coding Tree of 1-types for (Q, <)

G2<x

[ ] [ J [ J [ ]
4 gs do as 01 Qa
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Example: Coding Tree of 1-types for (Q, <)

G2<x

o

[ ] [ J [ J [ ]
4 gs do as 01 Qa
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Example: Coding Tree of 1-types for (Q, <)

x<q3 q3<x

x<q2 g2 <x

[ ] [ J [ J [ J [ ]
4 gs do as 01 Qa
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Example: Coding Tree of 1-types for (Q, <)

x<q3

x<q2

[ ] [ J [ J [ ]
4 gs do as 01 Qa
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Example: Coding Tree of 1-types for (Q, <)
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x<q2
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Example: Coding Tree of 1-types for (Q, <)
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[ ] [ J [ J [ ]
4 gs do as 01 Qa

Natasha Dobrinen Infinite Structural Ramsey Theory Notre Dame 26 /50



Example: Coding Tree of 1-types for (Q, <)

Xx<gs
x<qa
x<q3

x<q2

[ ] [ ] [ J [ J [ ]
4 gs do as 01 Qa
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Sierpinski's Coloring

[ J [ ] [ ] [ ]
d gs do as 01 aa
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Sierpinski's Coloring

° [ ° ®
d gs do as 01 aa
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Sierpinski's Coloring
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Sierpinski's Coloring

[ J [ ] [ ] [ ]
d gs do as 01 aa
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Second Ingredient: Diagonal Antichains

An antichain is diagonal if any two nodes in its meet closure have
different lengths.

qé <x

q§ <x

q{ <x

( ] ( } [ ] [ ]
g5 9 9 q;
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Devlin's Diagonal Antichains and Exact rees

qg <x

q§<x

q{ <x

o [ ] [ ] [ ]
a5 9 95 9
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Devlin's Diagonal Antichains and Exact rees

qg <x

q§<x

q{ <x

[ ] o [ ] [ ]
a5 9 95 9
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Devlin's Diagonal Antichains and Exact Degrees

Theorem (Devlin, 1979)

For each k > 1, given any coloring of [Q]* into finitely many colors,
there is a subset Q) C Q forming a dense linear order such that the
k-element subsets of Q' take at most T (k) = (2k — 1)!cak_1 colors,
where c, is from the tangent function tan(x) = >/ c,x".
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Devlin types for triples of Rationals

VR NN,
VR/AVARY

ond Huir MGrror 7mug,¢5,
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Third Ingredient for Rado graph (and other FAP classes)

For the Rado graph, a Third Ingredient is involved in big Ramsey
degrees:

passing types encode relations as a longer coding node ‘passes by’ a
shorter one.
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Coding Tree of 1-types for the Rado Graph, R

Vo
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Coding Tree of 1-types for the Rado Graph, R

Vi C3

(&)}
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Diagonal Antichain encoding the Rado graph

ipa.SC D?
Q Types

F DLSSTnZ,
. AYV‘I o 4_7)“5
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Big Ramsey degrees of the Rado graph

Theorem (Laflamme—Sauer—Vuksanovic, 2006)

The big Ramsey degree of a finite graph A inside the Rado graph is
exactly the number of diagonal antichains encoding a copy of A.

Moreover, the same holds for all unrestricted structures in finitely
many binary relations.
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Big Ramsey degrees of the Rado graph

Theorem (Laflamme—Sauer—Vuksanovic, 2006)

The big Ramsey degree of a finite graph A inside the Rado graph is
exactly the number of diagonal antichains encoding a copy of A.

Moreover, the same holds for all unrestricted structures in finitely
many binary relations.

Examples of other unrestricted structures:
e The random directed graph
e Superposition of the Rado graph and a random directed graph
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Diaries for BRD of Edges and Non-edges in R

VAR
U
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Diaries for BRD of Triangles in R

VEENE

G
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o Classic methods for finding upper bounds for big Ramsey degrees
in Q and Rado graph use Milliken's Ramsey Theorem for Trees.
(tomorrow)

e The Halpern-Lauchli Theorem forms the pigeonhole for the proof
of Milliken's Theorem.

TL\IS aided Hu ae.e_ve(olomoh-‘- of BRD-fr
'Pr(,( uma(gmm‘n‘lﬂ’o—r\ c(asses w#{\ ‘Pur,a70€de¢v\ Subsfrud—urzg
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V. The Halpern-Lauchli Theorem and Harrington's ‘forcing proof’.
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Halpern-Lauchli Theorem - strong tree version

Notation: ® Ti= U H Ti(n)

i<d n<w i<d

Theorem (Halpern-Lauchli, 1966)

Let T; C w=¥, i < d, be finitely branching trees with no terminal
nodes. Given a coloring x : @, Ti — 2, there are strong subtrees
S; < T; with nodes of the same lengths such that x is constant on

®i<d Si.
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Halpern-Lauchli Theorem - strong tree version

Notation: ® Ti= U H Ti(n)

i<d n<w i<d

Theorem (Halpern-Lauchli, 1966)

Let T; C w=¥, i < d, be finitely branching trees with no terminal
nodes. Given a coloring x : @, Ti — 2, there are strong subtrees
S; < T; with nodes of the same lengths such that x is constant on

®i<d Si.

HL was distilled as a key lemma in the proof that the Boolean Prime
Ideal Theorem is strictly weaker than the Axiom of Choice over ZF.
(Halpern-Lévy, 1971)
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Example: Coloring Ty ® T4
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Example: Coloring Ty ® T4
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e color on Sy ® 51

QL) O] O P DD

® ® )] )

50 51
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HL gives S; C T, with one color on 5y ® S;

QL) O] O P DD

® ® )] )

50 51
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An Application of HL to Products of Rationals

Theorem (Laver, 1984)

Given d < w and a coloring of Q? into finitely many colors, there are
X; CQ, i < d, isomorphic to Q such that Xy x --- x Xy_1 takes at
most d! many colors.
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Harrington's ‘Forcing’ Proof of Halpern-Lauchli Theorem

Harrington devised a proof of the Halpern—-Lauchli Theorem that uses
forcing methods to do countably many searches for finite objects.

This is NOT an absoluteness proof; no generic extensions involved.
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This is NOT an absoluteness proof; no generic extensions involved.

Theorem (Erdés-Rado)

For r < w and yu an infinite cardinal, 3,(p)* — (u*);.
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Harrington's ‘Forcing’ Proof of Halpern-Lauchli Theorem

Harrington devised a proof of the Halpern—-Lauchli Theorem that uses
forcing methods to do countably many searches for finite objects.

This is NOT an absoluteness proof; no generic extensions involved.

Theorem (Erdés-Rado)

For r < w and yu an infinite cardinal, 3,(p)* — (u*);.

Thanks to Laver for an outline of this proof in 2011!
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Harrington's ‘Forcing’ Proof of Halpern-Lauchli

Fix d > 2 and let T; = 2<% (i < d) be finitely branching trees with
no terminal nodes. Fix a coloring ¢ : @;_, Ti — 2.

Let & = Jpg. Then x — (Ry)F.

P = Cohen forcing adding x new branches to each tree T;, i < d.
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Harrington's ‘Forcing’ Proof of Halpern-Lauchli

Fix d > 2 and let T; = 2<% (i < d) be finitely branching trees with
no terminal nodes. Fix a coloring c: @Q._, T; — 2.

i<d
Let & = Jpg. Then x — (Ry)F.

P = Cohen forcing adding x new branches to each tree T;, i < d.

P is the set of functions p of the form

p:dxgp—>UT,-[€p

i<d
where 6, € [£]<“, 0, < w, and Vi < d, {p(i,8) : 6 € 5,} C T; | £,.

q<piffly>1, 0,20, and ¥(i,8) € d x b,, q(i,8) 2 p(i, ).
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Harrington's ‘Forcing’ Proof: Set-up for the Ctbl Coloring

Fori<d, a <k, b,-va denotes the a-th generic branch in T;.
Let ¢ be a P-name for a non-principal ultrafilter on w.
For a = <a0, RN ad_1> € [I{]d, let by := <b07a0, e bd—l,ad_1>-

For @ € [k]9, take some pz € P with @ C gp& such that
Q p; decides an e5 € 2 s.t. ps IF c(b& [ 0) = eg for U many /,
Q@ c({pa(i,a;):i<d})=¢ea.
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Harrington's ‘Forcing’ Proof: The Countable Coloring

For 6 € [k]* and ¢+ : 2d — 2d, let
d = (0,0), 0u(2), - - - Bud—2y)) and = (6,1, 03y, - - - » Ougzd-1))-
Define  £(1,6) = (1,24, ks, ({pa(i,02())) - j < ks) : i < d),
<<I7J> . I< d7 J< ko_z’add'(j) = Oé,'),
(U, k) 2 J < ka, k < kg, da(j) = d5(k))),

where ks = |6,.|, and (65(j) : j < kg) enumerates 0.
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Harrington's ‘Forcing’ Proof: The Countable Coloring

For 6 € [k]* and ¢+ : 2d — 2d, let

&= (B(0), 0u2);s - - - Bu2a—2y)) and F = (8,1, 0u3); - - - » Buaa1))-

Define  £(1,6) = (1,24, ks, ({pa(i,02())) - j < ks) : i < d),
((i,j) - i<d, j<kszdz(j) = a;),
(U k) 1 J < kay k < kg, 6a(j) = d5(k))),

where ks = |6,.|, and (65(j) : j < kg) enumerates 0.

Define f(6) = (f(1,0) : ¢ € ).
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Harrington's ‘Forcing’ Proof: Set of compatible conditions

r — (N1)}? implies 3H € [k]™ homogeneous for f.

Take K; € [H]™ where Ky < -+ < Ky_; and let K :=J

/<d

Main Lemma. {pz:a € [[,_, K} is compatible.

i<d
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Harrington's ‘Forcing’ Proof: The Construction

@Exiwal +o
r29 frey
CO[O( ty, 3”’\“"”“

1“’5 W\loo$ .
@ valur &y on
W MMMW,\S.
) Lo
Form % = U? ao(;, (5_’\"1 (,/642}

O+ =P (L»"O
for el Re K, xK T,
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@ ldeas in this proof plus the idea of starting with coding trees of
1-types (rather than regularly branching trees) opened the door
to proving the Henson graphs have finite big Ramsey degrees,
which inspired an expansion of results and methods.
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@ ldeas in this proof plus the idea of starting with coding trees of
1-types (rather than regularly branching trees) opened the door
to proving the Henson graphs have finite big Ramsey degrees,
which inspired an expansion of results and methods.

e In their AMS Memoirs book (2023), Angles d'Auriac, Cholak,

Dzhafarov, Monin, and Patey, the Halpern-Lauchli Theorem is
computably true and admits strong cone avoidance.
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