# Ramsey Theory on Infinite Structures, Part II

# Natasha Dobrinen University of Notre Dame

# ASL North American Annual Meeting UC Irvine, March 25–29, 2023

With grateful acknowledgment of research support from NSF grants DMS-1301665, 1600781, 1901753

- I. Big Ramsey Degree Characterizations and Methods
  - (a) Q, Rado, unrestricted: Milliken's Strong Tree Theorem
    (b) SDAP<sup>+</sup> and FAP Structures: Forcing on Coding Trees
  - (b) Sprit and Martin Structures. Foreing of C
  - (c) Generic Poset: Parameter Words
- II. Infinite-dimensional Ramsey Theory on  $\boldsymbol{\omega}$
- III. Infinite-dimensional Structural Ramsey Theory
- IV. More Directions

Recall from yesterday:

Let  ${\bf K}$  be an infinite structure.

**K** has **finite big Ramsey degrees** if for each finite  $\mathbf{A} \leq \mathbf{K}$ ,  $\exists T$  such that  $\forall r, \forall \chi : \binom{\mathsf{K}}{\mathsf{A}} \to r, \exists \mathsf{K}' \in \binom{\mathsf{K}}{\mathsf{K}}$  such that  $|\chi \upharpoonright \binom{\mathsf{K}'}{\mathsf{A}}| \leq T$ .

The **big Ramsey degree** of **A** in **K**,  $T(\mathbf{A})$ , is the least such T.

### I. Big Ramsey Degree Characterizations and Methods

### BRD Characterizations for ${\ensuremath{\mathbb Q}}$ and Rado graph

- (1) Enumerate the universe; induce a coding tree of 1-types.
- (2) Diagonal antichain representing K.
- (3) Passing types encode binary relations in K.

### BRD Characterizations for ${\ensuremath{\mathbb Q}}$ and Rado graph

- (1) Enumerate the universe; induce a coding tree of 1-types.
- (2) Diagonal antichain representing K.
- (3) Passing types encode binary relations in K.
  - Q uses (1) and (2). (3) is redundant as the order relation is always determined at lower levels by transitivity.
  - Rado graph uses (1)–(3).

### BRD Characterizations for ${\ensuremath{\mathbb Q}}$ and Rado graph

- (1) Enumerate the universe; induce a coding tree of 1-types.
- (2) Diagonal antichain representing K.
- (3) Passing types encode binary relations in K.
  - Q uses (1) and (2). (3) is redundant as the order relation is always determined at lower levels by transitivity.
  - Rado graph uses (1)–(3).

Terminology: Devlin types (Q), similarity types [LSV], (diagonal) diaries [BCDHKVZ] and following

Coding trees were developed in 2015 to handle the triangle-free Henson graph. In hindsight they were coding trees of 1-types.

Coding trees were developed in 2015 to handle the triangle-free Henson graph. In hindsight they were coding trees of 1-types.

Coding trees of 1-types were first made explicit in 2020 in [Coulson–D.–Patel], including the coding tree of 1-types for  $\mathbb{Q}$ .

Coding trees were developed in 2015 to handle the triangle-free Henson graph. In hindsight they were coding trees of 1-types.

Coding trees of 1-types were first made explicit in 2020 in [Coulson–D.–Patel], including the coding tree of 1-types for  $\mathbb{Q}$ .

Now we will go through the classic methodology.

### I. Big Ramsey Degree Characterizations and Methods

### (a) Results using Milliken's Theorem

- Tree  $k^{<\omega}$  represents a universal structure.
  - (a) Represent  $\mathbb{Q}$  by  $2^{<\omega}$  with lexicographic order.
  - (b) Represent a universal graph by  $2^{<\omega}$ .
  - (c) Represent a universal structure for Age(**K**) by  $k^{<\omega}$  for an unrestricted structure **K** with *n* binary relations, where  $k = 2^n$ .

- Tree  $k^{<\omega}$  represents a universal structure.
  - (a) Represent  $\mathbb{Q}$  by  $2^{<\omega}$  with lexicographic order.
  - (b) Represent a universal graph by  $2^{<\omega}$ .
  - (c) Represent a universal structure for Age(**K**) by  $k^{<\omega}$  for an unrestricted structure **K** with *n* binary relations, where  $k = 2^n$ .
- Ouse Milliken's Ramsey theorem for strong subtrees and envelopes to obtain upper bounds for BRD.

- Tree  $k^{<\omega}$  represents a universal structure.
  - (a) Represent  $\mathbb{Q}$  by  $2^{<\omega}$  with lexicographic order.
  - (b) Represent a universal graph by  $2^{<\omega}$ .
  - (c) Represent a universal structure for Age(**K**) by  $k^{<\omega}$  for an unrestricted structure **K** with *n* binary relations, where  $k = 2^n$ .
- Ouse Milliken's Ramsey theorem for strong subtrees and envelopes to obtain upper bounds for BRD.
- Onstruct a diagonal antichain inside the infinite binary branching tree which represents a subcopy of K.

- Tree  $k^{<\omega}$  represents a universal structure.
  - (a) Represent  $\mathbb{Q}$  by  $2^{<\omega}$  with lexicographic order.
  - (b) Represent a universal graph by  $2^{<\omega}$ .
  - (c) Represent a universal structure for Age(**K**) by  $k^{<\omega}$  for an unrestricted structure **K** with *n* binary relations, where  $k = 2^n$ .
- Ouse Milliken's Ramsey theorem for strong subtrees and envelopes to obtain upper bounds for BRD.
- Onstruct a diagonal antichain inside the infinite binary branching tree which represents a subcopy of K.
- Show that the BRD are exactly characterized via diagonal antichains encoding the structures. (lower bounds)

Given  $n \ge 1$  and a coloring of all n-strong subtrees of  $2^{<\omega}$  into finitely many colors, there is an infinite strong subtree of  $2^{<\omega}$  in which all n-strong subtrees have the same color.

A subtree T of  $2^{<\omega}$  is **n-strong** if it is isomorphic to the tree  $2^{n-1}$ .

Given  $n \ge 1$  and a coloring of all n-strong subtrees of  $2^{<\omega}$  into finitely many colors, there is an infinite strong subtree of  $2^{<\omega}$  in which all n-strong subtrees have the same color.



Given  $n \ge 1$  and a coloring of all n-strong subtrees of  $2^{<\omega}$  into finitely many colors, there is an infinite strong subtree of  $2^{<\omega}$  in which all n-strong subtrees have the same color.



Given  $n \ge 1$  and a coloring of all n-strong subtrees of  $2^{<\omega}$  into finitely many colors, there is an infinite strong subtree of  $2^{<\omega}$  in which all n-strong subtrees have the same color.



Given  $n \ge 1$  and a coloring of all n-strong subtrees of  $2^{<\omega}$  into finitely many colors, there is an infinite strong subtree of  $2^{<\omega}$  in which all n-strong subtrees have the same color.

Remark.

• Halpern-Läuchli Theorem forms the pigeonhole principle in the proof of Milliken's Theorem.

### Envelopes of Diagonal Antichains



### Envelopes of Diagonal Antichains

Apply Milliken to get one color per diary.



Then pullout diagonal antichain encoding IK.

### Theorem (Balko, Chodounský, Hubička, Konečný, Vena, 2022)

The 3-uniform generic hypergraph has finite big Ramsey degrees.

Proof uses product tree Milliken Theorem and a clever encoding of the ternary edge relation via two trees.

### Theorem (Balko, Chodounský, Hubička, Konečný, Vena, 2022)

The 3-uniform generic hypergraph has finite big Ramsey degrees.

Proof uses product tree Milliken Theorem and a clever encoding of the ternary edge relation via two trees.

Theorem (Braunfeld, Chodounský, de Rancourt, Hubička, Kawach, Konečný, 2023+)

Given a countable relational language  $\mathcal{L}$  with finitely many relations of every arity > 1, let  $\mathcal{K}$  be the Fraïssé class of finite unrestricted  $\mathcal{L}$ -structures. The Fraïssé limit has finite big Ramsey dgrees.

Proof uses [Laver 1984] Ramsey Theorem for product of infinitely many trees.

#### I. Big Ramsey Degree Characterizations and Methods

### (b) Results using Coding Trees and Forcing Methods

Problem 11.2 in [KPT 05] asked (among many other things) whether the k-clique-free Henson graphs have finite big Ramsey degrees.

The **Henson graph**,  $\mathcal{H}_3$ , is the infinite homogeneous triangle-free graph into which every finite triangle-free graph embeds.

The **Henson graph**,  $\mathcal{H}_3$ , is the infinite homogeneous triangle-free graph into which every finite triangle-free graph embeds.

Previous Results:

- $T(vertex, \mathcal{H}_3) = 1$ , Pigeonhole Principle (Komjáth–Rödl, 1986)
- $T(Edge, \mathcal{H}_3) = 2$  (Sauer, 1998)

Milliken's Theorem unable to handle triangle-free graphs.

- Start with the end in sight, and
- Try big machinery first: forcing.

- Start with the end in sight, and
- Try big machinery first: forcing. precursor: Harrington's forcing proof of Halpern-Läuchli.

- Start with the end in sight, and
- Try big machinery first: forcing. precursor: Harrington's forcing proof of Halpern-Läuchli.

• Coding Trees: Enumerate a Henson graph and use it to determine the correct tree structure.

- Start with the end in sight, and
- Try big machinery first: forcing. precursor: Harrington's forcing proof of Halpern-Läuchli.
- Coding Trees: Enumerate a Henson graph and use it to determine the correct tree structure.
- A Ramsey Theorem for Coding Trees: Use the set-theoretic method of forcing to do unbounded searches for finite objects.

- Start with the end in sight, and
- Try big machinery first: forcing. precursor: Harrington's forcing proof of Halpern-Läuchli.
- Coding Trees: Enumerate a Henson graph and use it to determine the correct tree structure.
- A Ramsey Theorem for Coding Trees: Use the set-theoretic method of forcing to do unbounded searches for finite objects.
- A new notion of envelope.


## Coding Tree of 1-types for $\mathcal{H}_3$



## Forcing a Level Set Pigeonhole (HL analogue)

A level set is a set of nodes with the same length.

- Fix **K**. Let  $\mathbb{S}$  be its coding tree of 1-types.
- Fix a finite subtree A ⊆ S and fix a level set X in T end-extending A.
- Color all copies of X extending A into two colors.
- Build a subtree T representing a subcopy of K in which all copies of X extending A have the same color.

## Forcing a Level Set Pigeonhole (HL analogue)

A level set is a set of nodes with the same length.

- Fix **K**. Let  $\mathbb{S}$  be its coding tree of 1-types.
- Fix a finite subtree A ⊆ S and fix a level set X in T end-extending A.
- Color all copies of X extending A into two colors.
- Build a subtree T representing a subcopy of K in which all copies of X extending A have the same color.

Three challenges: 1) Figure out the right partial order to force with.
2) Find good starting nodes for building a subtree.
3) Build a subtree encoding K in which all copies of X have the same color.























#### Theorem (D., JML 2020 and 2022)

The triangle-free and more generally all k-clique-free Henson graphs have finite big Ramsey degrees.

Proofs directly reproduce indivisibility.

# Exact BRD for triangle-free Henson graph

A small tweak of the trees in [D.2020] produces exact big Ramsey degrees.

Theorem (D. and independently, Balko, Chodounský, Hubička, Konečný, Vena, Zucker, 2020)

Exact big Ramsey degrees of the triangle-free Henson graph are characterized.

The characterization involves

- (1) Diagonal antichains;
- (2) Controlled age-change levels: first levels of pairs coding of edges with a common vertex in  $\mathcal{H}_3$ ;
- (3) Controlled coding levels;
- (4) Controlled paths: first level off of leftmost branch.

# A Strong (Diagonal) Diary for $\mathcal{H}_3$





Fix a language  $\mathcal{L}$  with finitely many relations of arity at most 2.

An  $\mathcal{L}$ -structure is **irreducible** if any two vertices are in some relation: e.g., finite clique, finite tournament, triangle with 2 red edges and one blue edge.

**Free amalgamation classes** are exactly of the form  $Forb(\mathcal{F})$ , where  $\mathcal{F}$  is a set of finite **irreducible** structures.

Fix a language  $\mathcal{L}$  with finitely many relations of arity at most 2.

An  $\mathcal{L}$ -structure is **irreducible** if any two vertices are in some relation: e.g., finite clique, finite tournament, triangle with 2 red edges and one blue edge.

**Free amalgamation classes** are exactly of the form  $Forb(\mathcal{F})$ , where  $\mathcal{F}$  is a set of finite **irreducible** structures.

#### Theorem (Zucker, 2022)

All finitely constained binary FAP classes have finite big Ramsey degrees.

Theorem (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker, 2021+)

The exact big Ramsey degrees of finitely constrained binary FAP classes are characterized by the following:

- Diagonal antichains
- Ontrolled splitting levels
- Controlled age-change levels (essential changes in the class of structures which can be glued above a finite structure to make a member of *K*)
- Controlled coding levels (reducing the ages of the extending class as much as possible)
- **Solution** Controlled paths (only matter for non-trivial unary relations)

An unexpected application of coding trees and forcing to structures which behave like  $\mathbb Q$  or the Rado graph:

#### Theorem (Coulson–D.–Patel)

Let  $\mathcal{L}$  be a finite relational language and let  $\mathcal{K}$  be a Fraïssé class with Fraïssé limit satisfying the Substructure Disjoint Amalgamation Property<sup>+</sup>. Let  $\mathbf{K} = Flim(\mathcal{K})$ .

I. K is indivisible.

II. If  $\mathcal{L}$  has no relations of arity greater than two, then K has big Ramsey degrees characterized by diagonal antichains.

This class of structures includes

- $\mathbb{Q}$ ,  $\mathbb{Q}_n$  [Laflamme, Nguyen Van Thé, Sauer],  $\mathbb{Q}_{\mathbb{Q}}$ ,  $(\mathbb{Q}_{\mathbb{Q}})_n$ ,
- Rado graph, all structures in [LSV], generic *k*-partite graph, ordered versions of these.

## Methodology for SDAP<sup>+</sup> Structures

- **9** Given enumerated **K**, form the induced coding tree of 1-types.
- I Take a diagonal sub-coding tree.
- Use forcing to prove a Halpern-Läuchli-style theorem on diagonal coding trees.

This yields indivisibility for all arities. [Coulson-D.-Patel, Part I]

- For structures with only unary and binary relations, do induction argument to get one color per diagonal antichain representing a finite structure. (no envelopes needed!)
- Show the upper bounds in (4) are exact BRD. [Coulson-D.-Patel, Part II]

I. Big Ramsey Degree Characterizations and Methods

(c) Posets with Linear Extension and Carlson-Simpson's Ramsey Theorem for Parameter Words

## The Generic Partial Order with Linear Extension

Let  $\mathcal{P}$  be the Fraïssé class of finite partial orders with linear extensions.  $\mathbf{P} = Flim(\mathcal{P})$ .

$$\mathcal{L} = \{\leq, \prec\}.$$
 For  $\mathbf{A} \in \mathcal{P}$ ,  $(v \leq w \land v \neq w) \Rightarrow v \prec w$ .

#### Theorem (Hubička, 2020+)

The generic partial order with linear extension has finite big Ramsey degrees.

• Hubička also gave a short proof of finite BRD for the triangle-free Henson graph. Interestingly, this proof directly yields indivisibility.

# Theorem (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker, 2023+)

The generic partial order with linear extension has big Ramsey degrees characterized by poset diaries.

## Words encoding partial orders

 $\Sigma = \{\mathrm{L}, \mathrm{X}, \mathrm{R}\}$  is the alphabet, ordered by  $\mathrm{L} <_{\mathrm{lex}} \mathrm{X} <_{\mathrm{lex}} \mathrm{R}.$ 

 $\Sigma^*$  is set of all finite words in the alphabet  $\Sigma.~\leq_{\mathrm{lex}}$  extends to  $\Sigma^*.$ 

 $w = w_0 w_1 \dots w_{|w|-1}$ 

Definition (Partial order  $(\Sigma^*, \preceq)$ ) For  $w, w' \in \Sigma^*$ , we set  $w \prec w'$  if and only if there exists i such that: •  $0 \leq i < \min(|w|, |w'|)$ , •  $(w_i, w'_i) = (L, R)$ , •  $w_j \leq_{lex} w'_j$  for every  $0 \leq j < i$ .

•  $(\Sigma^*, \preceq)$  is a universal partial order and  $(\Sigma^*, \leq_{lex})$  is a linear extension of it. (Hubička, 2020+)

Let  $\{\lambda_i : i < \omega\}$  be parameters.

For  $n \leq \omega$ , given an *n*-parameter word W and a parameter word s of length  $k \leq n$ , W(s) is the word created by replacing each occurrence of  $\lambda_i$ , i < k, by  $s_i$  and truncating before first occurrence of  $\lambda_k$  in W.

#### Theorem (Carlson–Simpson, 1984)

If  $\Sigma^*$  is colored with finitely many colors, then there is an infinite-parameter word W such that  $W[\Sigma^*] := \{W(s) : s \in \Sigma^*\}$  is monochromatic.

- Apply Carlson–Simpson Theorem on a universal poset to get upper bounds. Afterward, pull out an enumerated copy of ℙ.
- Steps are similar to classic approach with Milliken's Theorem, BUT it can handle posets and  $\mathcal{H}_3$  (but not  $\mathcal{H}_4$ ).
- Forcing methods on coding trees fail for the generic partial order.

For  $\ell > 0$  and words  $w, w' \in \Sigma_{\ell}^*$ , write  $w \trianglelefteq w'$  iff  $w_i \le_{\text{lex}} w'_i$  for every  $0 \le i < \ell$ .  $w \perp w'$  iff w and w' are  $\trianglelefteq$ -incomparable.

 $S \subseteq \Sigma^*$  is a **poset-diary** if S is a diagonal antichain in  $(\Sigma^*, \sqsubseteq)$  and precisely one of the following four conditions is satisfied for every level  $\ell$  with  $0 \leq \ell < \sup_{w \in S} |w|$ :

(1) Leaf.

- (2) Splitting: One node splits into X,R.
- (3) New ⊥.
- (4) New relation  $\prec$ .

(3) and (4) are the 'interesting levels'.

### Examples of Poset Diaries



# I. Summary: BRD's and Diaries

All Diaries characterizing exact big Ramsey degrees (so far) involve

(a) Diagonal antichains

(b) passing types or interesting levels

Some (restricted FAP, posets) also involve

(c) essential age-changes/interesting levels

Some (restricted FAP) also involve

(d) controlled coding levels and paths.

Minimize ages, but make the changes happen as slowly as possible.

II. Infinite-dimensional Ramsey Theory on  $\boldsymbol{\omega}$ 

A subset  $\mathcal{X}$  of  $[\omega]^{\omega}$  is **Ramsey** if each for  $M \in [\omega]^{\omega}$ , there is an  $N \in [M]^{\omega}$  such that  $[N]^{\omega} \subseteq \mathcal{X}$  or  $[N]^{\omega} \cap \mathcal{X} = \emptyset$ .

Ramsey's Theorem (topological form). For any m and r, if  $\mathcal{X} \subseteq [\omega]^{\omega}$  is a union of basic clopen sets of the form  $[s, \omega]$  where  $s \in [\omega]^m$ , then  $\mathcal{X}$  is Ramsey.

A subset  $\mathcal{X}$  of  $[\omega]^{\omega}$  is **Ramsey** if each for  $M \in [\omega]^{\omega}$ , there is an  $N \in [M]^{\omega}$  such that  $[N]^{\omega} \subseteq \mathcal{X}$  or  $[N]^{\omega} \cap \mathcal{X} = \emptyset$ .
A subset  $\mathcal{X}$  of  $[\omega]^{\omega}$  is **Ramsey** if each for  $M \in [\omega]^{\omega}$ , there is an  $N \in [M]^{\omega}$  such that  $[N]^{\omega} \subseteq \mathcal{X}$  or  $[N]^{\omega} \cap \mathcal{X} = \emptyset$ .

Ramsey's Theorem (topological form). For any m and r, if  $\mathcal{X} \subseteq [\omega]^{\omega}$  is a union of basic clopen sets of the form  $[s, \omega]$  where  $s \in [\omega]^m$ , then  $\mathcal{X}$  is Ramsey.

A subset  $\mathcal{X}$  of  $[\omega]^{\omega}$  is **Ramsey** if each for  $M \in [\omega]^{\omega}$ , there is an  $N \in [M]^{\omega}$  such that  $[N]^{\omega} \subseteq \mathcal{X}$  or  $[N]^{\omega} \cap \mathcal{X} = \emptyset$ .

## AC $\Rightarrow \exists \mathcal{X} \subseteq [\omega]^{\omega}$ which is not Ramsey. Solution: restrict to 'definable' sets.

A subset  $\mathcal{X}$  of  $[\omega]^{\omega}$  is **Ramsey** if each for  $M \in [\omega]^{\omega}$ , there is an  $N \in [M]^{\omega}$  such that  $[N]^{\omega} \subseteq \mathcal{X}$  or  $[N]^{\omega} \cap \mathcal{X} = \emptyset$ .

Nash-Williams Thm. Clopen sets are Ramsey.

Galvin–Prikry Thm. Borel sets are Ramsey.

Silver Thm. Analytic sets are Ramsey.

**Ellentuck Thm.** A set is completely Ramsey iff it has the property of Baire in the Ellentuck topology.

**Ellentuck topology**: refines the metric topology with basic open sets  $[s, A] = \{B \in [\omega]^{\omega} : s \sqsubset B \subseteq A\}.$ 

**Ellentuck topology**: refines the metric topology with basic open sets  $[s, A] = \{B \in [\omega]^{\omega} : s \sqsubset B \subseteq A\}.$ 

#### Theorem (Ellentuck)

A set  $\mathcal{X} \subseteq [\omega]^{\omega}$  satisfies

 $(*) \qquad \forall [s,A] \;\; \exists B \in [s,A] \; \textit{such that} \; [s,B] \subseteq \mathcal{X} \; \textit{or} \; [s,B] \cap \mathcal{X} = \emptyset$ 

iff  $\mathcal{X}$  has the property of Baire with respect to the Ellentuck topology.

**Ellentuck topology**: refines the metric topology with basic open sets  $[s, A] = \{B \in [\omega]^{\omega} : s \sqsubset B \subseteq A\}.$ 

#### Theorem (Ellentuck)

A set  $\mathcal{X} \subseteq [\omega]^{\omega}$  satisfies

 $(*) \qquad \forall [s,A] \;\; \exists B \in [s,A] \; \textit{such that} \; [s,B] \subseteq \mathcal{X} \; \textit{or} \; [s,B] \cap \mathcal{X} = \emptyset$ 

iff  $\mathcal{X}$  has the property of Baire with respect to the Ellentuck topology.

(\*) is called completely Ramsey by Galvin-Prikry and Ramsey by Todorcevic.

**Ellentuck topology**: refines the metric topology with basic open sets  $[s, A] = \{B \in [\omega]^{\omega} : s \sqsubset B \subseteq A\}.$ 

#### Theorem (Ellentuck)

A set  $\mathcal{X} \subseteq [\omega]^{\omega}$  satisfies

 $(*) \qquad \forall [s,A] \;\; \exists B \in [s,A] \; \textit{such that} \; [s,B] \subseteq \mathcal{X} \; \textit{or} \; [s,B] \cap \mathcal{X} = \emptyset$ 

iff  $\mathcal{X}$  has the property of Baire with respect to the Ellentuck topology.

(\*) is called completely Ramsey by Galvin-Prikry and Ramsey by Todorcevic.

The Ellentuck space is the prototype for **topological Ramsey spaces**:

**Ellentuck topology**: refines the metric topology with basic open sets  $[s, A] = \{B \in [\omega]^{\omega} : s \sqsubset B \subseteq A\}.$ 

#### Theorem (Ellentuck)

A set  $\mathcal{X} \subseteq [\omega]^{\omega}$  satisfies

 $(*) \qquad \forall [s,A] \;\; \exists B \in [s,A] \; \textit{such that} \; [s,B] \subseteq \mathcal{X} \; \textit{or} \; [s,B] \cap \mathcal{X} = \emptyset$ 

iff  $\mathcal{X}$  has the property of Baire with respect to the Ellentuck topology.

(\*) is called completely Ramsey by Galvin-Prikry and Ramsey by Todorcevic.

The Ellentuck space is the prototype for **topological Ramsey spaces**: Points are infinite sequences, topology is induced by finite heads and infinite tails, and every subset with the property of Baire satisfies (\*).

- Ellentuck space
- Milliken strong trees
- Carlson-Simpson Parameter Words

For more on (topological) Ramsey spaces, see Todorcevic's 2010 book, *Introduction to Ramsey spaces*.

#### III. Infinite-dimensional Structural Ramsey Theory

Problem 11.2 in [KPT 2005]. Given a homogeneous structure K, find the right notion of 'definable set' so that all definable subsets of  $\binom{K}{K}$  are Ramsey.

Problem 11.2 in [KPT 2005]. Given a homogeneous structure K, find the right notion of 'definable set' so that all definable subsets of  $\binom{K}{K}$  are Ramsey.

We assume the universe of **K** is  $\omega$  so that  $\binom{\mathsf{K}}{\mathsf{K}}$  is a subspace of  $[\omega]^{\omega}$ .

Problem 11.2 in [KPT 2005]. Given a homogeneous structure K, find the right notion of 'definable set' so that all definable subsets of  $\binom{K}{K}$  are Ramsey.

We assume the universe of **K** is  $\omega$  so that  $\binom{\mathsf{K}}{\mathsf{K}}$  is a subspace of  $[\omega]^{\omega}$ .

#### Constraint: Big Ramsey degrees.

Must fix a big Ramsey structure and work on subcopies (embeddings) of it.

#### Theorem (D. 2022+)

Let **K** be a Fraïssé structure satisfying SDAP<sup>+</sup> with finitely many relations of arity at most two. Let  $\Delta$  be a strong diary representing **K**. Then every Borel subset of  $\mathcal{R}(\Delta)$  is completely Ramsey.

Examples: Rado graph, k-partite graphs, ordered versions.

Proof follows Galvin-Prikry but uses forcing for a stronger Pigeonhole.

#### Theorem (D. 2022+)

Let **K** be a Fraïssé structure satisfying SDAP<sup>+</sup> with finitely many relations of arity at most two. Let  $\Delta$  be a strong diary representing **K**. Then every Borel subset of  $\mathcal{R}(\Delta)$  is completely Ramsey.

Examples: Rado graph, k-partite graphs, ordered versions.

Proof follows Galvin-Prikry but uses forcing for a stronger Pigeonhole.

#### Corollary

If **K** has a certain amount of rigidity, Axiom A.3(2) of Todorcevic also holds, so we obtain analogues of Ellentuck's Theorem.

Examples: The rationals,  $\mathbb{Q}_n$ ,  $\mathbb{Q}_{\mathbb{Q}}$ .

## Diagonal Diary for the Rado Graph



We wanted to see if we could get a stronger  $\infty$ -dimensional theorem for the Rado graph and also for *k*-clique-free graphs.

#### Theorem (D.–Zucker)

Fix a finitely constrained binary free amalgamation class  $\mathcal{K}$  and let  $\mathbf{K} = Flim(\mathcal{K})$ . Then  $\mathbf{K}$  has infinite-dimensional Ramsey theory which directly recovers exact big Ramsey degrees in (BCDHKVZ 2021).

The strength of the theorem ranges from 'Souslin-measurable sets are Ramsey' (more than a Silver theorem analogue) to an analogue of the Ellentuck Theorem.

#### Theorem (Todorcevic)

Suppose that  $(\mathcal{R}, \mathcal{S}, \leq, \leq_{\mathcal{R}})$  with finite restriction maps satisfying axioms **A.1**–A.4, and that  $\mathcal{S}$  is closed. Then the field of  $\mathcal{S}$ -Ramsey subsets of  $\mathcal{R}$  is closed under the Souslin operation and it coincides with the field of  $\mathcal{S}$ -Baire subsets of  $\mathcal{R}$ .

When  $\mathcal{R} = \mathcal{S}$ , this theorem implies the Abstract Ellentuck Theorem.

#### Theorem (D.–Zucker)

The conclusion of the above theorem still holds when axiom A.3(2) is replaced by the weaker existence of an A.3(2)-ideal.

- Non-forcing proofs.
- Higher arities.
- Infinite-dimensional structural Ramsey theory.
- Reverse Mathematics.
- Topological dynamics correspondence.
- When exactly does  $\mathcal{K}$  having small Ramsey degrees imply  $\operatorname{Flim}(\mathcal{K})$  has finite big Ramsey degrees?
- What amalgamation or other properties of  ${\cal K}$  correspond to the characterization of its big Ramsey degrees?

Dobrinen, *Ramsey theory of homogeneous structures: current trends and open problems.* Proceedings of the International Congress of Mathematicians, 2022 (to appear). arXiv:2110.00655

Dobrinen, *Ramsey theory on infinite structures and the method of strong coding trees.* Contemporary logic and computing, 444–467, Landsc. Log, 1, Coll. Publ., (2020)

Dobrinen, *Forcing in Ramsey theory*, RIMS Kokyuroku 2042, (2017), 17–33. arXiv:1704.03898

# Thank you very much!

For  $X \in S$  and *a* a finite approximation to some member of  $\mathcal{R}$ ,

$$[a, X] = \{A \in \mathcal{R} : A \leq_{\mathcal{R}} X \text{ and } a \sqsubset A\}$$

A set  $\mathcal{X} \subseteq \mathcal{R}$  is  $\mathcal{S}$ -**Baire** if for every non-empty basic open set [a, X] there is an  $a \sqsubseteq b \in \mathcal{AR}$  and  $Y \leq X$  in  $\mathcal{S}$  such that  $[b, Y] \neq \emptyset$  and  $[b, Y] \subseteq \mathcal{X}$  or  $[b, Y] \subseteq \mathcal{X}^c$ .

*S*-**Ramsey** requires b = a and  $Y \in [depth_X(a), X]$ .

## Axioms for Ramsey Spaces

 $(\mathcal{R}, \mathcal{S}, \leq, \leq_{\mathcal{R}})$  and finite restrictions maps;  $\leq \subseteq \mathcal{S} \times \mathcal{S}$  and  $\leq_{\mathcal{R}} \subseteq \mathcal{R} \times \mathcal{S}$ .

A.1 (Sequencing) For any choice of  $\mathcal{P} \in \{\mathcal{R}, \mathcal{S}\}$ , (1)  $M|_0 = N|_0$  for all  $M, N \in \mathcal{P}$ , (2)  $M \neq N$  implies that  $M|_n \neq N|_n$  for some n, (3)  $M|_m = N|_n$  implies m = n and  $M|_k = N|_k$  for all  $k \leq m$ .

A.2 (Finitization) There is a transitive, reflexive relation  $\leq_{\text{fin}} \subseteq \mathcal{AS} \times \mathcal{AS}$  and a relation  $\leq_{\text{fin}}^{\mathcal{R}} \subseteq \mathcal{AR} \times \mathcal{AR}$  which are finitizations of the relations  $\leq$  and  $\leq_{\mathcal{R}}$ , meaning that the following hold:

## Todorcevic's Axioms 3 and 4 for Ramsey Spaces

A.3 (Amalgamation)  
(1) 
$$\forall a \in \mathcal{AR} \ \forall Y \in \mathcal{S}$$
,  
 $[d = \operatorname{depth}_{Y}(a) < \infty \rightarrow \forall X \in [d, Y] \ ([a, X] \neq \emptyset)],$   
(2)  $\forall a \in \mathcal{AR} \ \forall X, Y \in \mathcal{S}$ , letting  $d = \operatorname{depth}_{Y}(a)$ ,  
 $[X \leq Y \text{ and } [a, X] \neq \emptyset \rightarrow \exists Y' \in [d, Y] \ ([a, Y'] \subseteq [a, X])]$ 

A.4 (Pigeonhole) Suppose  $a \in \mathcal{AR}_k$  and  $\mathcal{O} \subseteq \mathcal{AR}_{k+1}$ . Then for every  $Y \in \mathcal{S}$  such that  $[a, Y] \neq \emptyset$ , there exists  $X \in [Y|_d, Y]$ , where  $d = \operatorname{depth}_Y(a)$ , such that the set  $\{A|_{k+1} : A \in [a, X]\}$  is either contained in  $\mathcal{O}$  or is disjoint from  $\mathcal{O}$ .

#### An ideal $\mathcal{I} \subseteq \mathcal{S} \times \mathcal{S}$ is a set satisfying

• 
$$(X, Y) \in \mathcal{I} \Rightarrow X \leq Y.$$

•  $(X, Y) \in \mathcal{I}$  and  $Z \leq X \Rightarrow (Z, Y) \in \mathcal{I}$ .

 $\mathcal{I}$  is an A.3(2)-ideal if additionally

- $\forall Y \in S \ \forall n < \omega \ \exists Y' \in S \ \text{with} \ (Y', Y) \in \mathcal{I} \ \text{and} \ Y'|_n = Y|_n.$
- If  $(X, Y) \in \mathcal{I}$  and  $a \in \mathcal{AR}^{\mathcal{X}}$ , there is  $Y' \in \mathcal{S}$  with  $Y' \in [depth_{Y}(a), Y]$ ,  $(Y', Y) \in \mathcal{I}$ , and  $[a, Y'] \subseteq [a, X]$ .