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Recall from yesterday:
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Big Ramsey Degrees

Let K be an infinite structure.

K has finite big Ramsey degrees if for each finite A  K, 9T such

that 8r , 8 � :
�
K
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�
! r , 9K0 2

�
K

K

�
such that |� �

�
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0
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�
|  T .

The big Ramsey degree of A in K, T (A), is the least such T .
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I. Big Ramsey Degree Characterizations and Methods
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BRD Characterizations for Q and Rado graph

(1) Enumerate the universe; induce a coding tree of 1-types.

(2) Diagonal antichain representing K.

(3) Passing types encode binary relations in K.

Q uses (1) and (2). (3) is redundant as the order relation is
always determined at lower levels by transitivity.

Rado graph uses (1)–(3).

Terminology: Devlin types (Q), similarity types [LSV],

(diagonal) diaries [BCDHKVZ] and following
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Yesterday I went through coding trees of 1-types.

Coding trees were developed in 2015 to handle the triangle-free
Henson graph. In hindsight they were coding trees of 1-types.

Coding trees of 1-types were first made explicit in 2020 in
[Coulson–D.–Patel], including the coding tree of 1-types for Q.

Now we will go through the classic methodology.
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I. Big Ramsey Degree Characterizations and Methods

(a) Results using Milliken’s Theorem
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Classic methodology: [Laflamme, Sauer, Vuksanovic, 2006]

1 Tree k
<! represents a universal structure.

(a) Represent Q by 2
<!

with lexicographic order.

(b) Represent a universal graph by 2
<!

.

(c) Represent a universal structure for Age(K) by k<!
for an unrestricted

structure K with n binary relations, where k = 2
n
.

2 Use Milliken’s Ramsey theorem for strong subtrees and envelopes
to obtain upper bounds for BRD.

3 Construct a diagonal antichain inside the infinite binary
branching tree which represents a subcopy of K.

4 Show that the BRD are exactly characterized via diagonal
antichains encoding the structures. (lower bounds)
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Milliken’s Theorem (special case)

Theorem (Milliken, 1979)

Given n � 1 and a coloring of all n-strong subtrees of 2<!
into finitely

many colors, there is an infinite strong subtree of 2<!
in which all

n-strong subtrees have the same color.

A subtree T of 2<! is n-strong if it is isomorphic to the tree 2n�1.
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Milliken’s Theorem (special case)

Theorem (Milliken, 1979)

Given n � 1 and a coloring of all n-strong subtrees of 2<!
into finitely

many colors, there is an infinite strong subtree of 2<!
in which all

n-strong subtrees have the same color.

Remark.

Halpern–Läuchli Theorem forms the pigeonhole principle in the
proof of Milliken’s Theorem.
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Envelopes of Diagonal Antichains
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Envelopes of Diagonal Antichains
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Apply Milliken toget one color per diary.

Thenpulloutdiagonal antichan encodingI.



Finite BRD for unrestricted higher arity relations

Theorem (Balko, Chodounský, Hubička, Konečný, Vena, 2022)

The 3-uniform generic hypergraph has finite big Ramsey degrees.

Proof uses product tree Milliken Theorem and a clever encoding of
the ternary edge relation via two trees.

Theorem (Braunfeld, Chodounský, de Rancourt, Hubička, Kawach,
Konečný, 2023+)

Given a countable relational language L with finitely many relations

of every arity > 1, let K be the Fräıssé class of finite unrestricted

L-structures. The Fräıssé limit has finite big Ramsey dgrees.

Proof uses [Laver 1984] Ramsey Theorem for product of infinitely
many trees.
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I. Big Ramsey Degree Characterizations and Methods

(b) Results using Coding Trees and Forcing Methods
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Free Amalgamation Classes with Forbidden Substructures

Problem 11.2 in [KPT 05] asked (among many other things) whether
the k-clique-free Henson graphs have finite big Ramsey degrees.
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Prior Methods Insu�cient for Triangle-Free Graphs

The Henson graph, H3, is the infinite homogeneous triangle-free
graph into which every finite triangle-free graph embeds.

Previous Results:

T (vertex,H3) = 1, Pigeonhole Principle (Komjáth–Rödl, 1986)

T (Edge,H3) = 2 (Sauer, 1998)

Milliken’s Theorem unable to handle triangle-free graphs.
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New developments: how forcing opened new paths

In December 2015 in Cambridge, new ideas came to me:

• Start with the end in sight, and
• Try big machinery first: forcing.

precursor: Harrington’s forcing proof of Halpern-Läuchli.

1 Coding Trees: Enumerate a Henson graph and use it to
determine the correct tree structure.

2 A Ramsey Theorem for Coding Trees: Use the set-theoretic
method of forcing to do unbounded searches for finite objects.

3 A new notion of envelope.
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Coding Tree of 1-types for H3

c0

c1

c2

c3

c4

c5

c6

•

...

v0

v1

v2

v3

v4

v5

v6

x 6Ev0 xEv0

x 6Ev1 xEv1 x 6Ev1

x 6Ev2 x 6Ev2 x 6Ev2xEv2 xEv2
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Forcing a Level Set Pigeonhole (HL analogue)

A level set is a set of nodes with the same length.

Fix K. Let S be its coding tree of 1-types.

Fix a finite subtree A ✓ S and fix a level set X in T
end-extending A.

Color all copies of X extending A into two colors.

Build a subtree T representing a subcopy of K in which all copies
of X extending A have the same color.

Three challenges: 1) Figure out the right partial order to force with.

2) Find good starting nodes for building a subtree.

3) Build a subtree encoding K in which all copies
of X have the same color.
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Forcing a Level Set Pigeonhole

FixedP adds  branches
where  ! (@1)2d@0

 must preserve ages

A

X
ci

T

copy of Xcj
copy of Xcj

good starting
triple for blue

cj

force to
find next

good level set

ckckckckck
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Upper bounds for Henson graphs

Theorem (D., JML 2020 and 2022)

The triangle-free and more generally all k-clique-free Henson graphs

have finite big Ramsey degrees.

Proofs directly reproduce indivisibility.
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Exact BRD for triangle-free Henson graph

A small tweak of the trees in [D.2020] produces exact big Ramsey
degrees.

Theorem (D. and independently, Balko, Chodounský, Hubička,
Konečný, Vena, Zucker, 2020)

Exact big Ramsey degrees of the triangle-free Henson graph are

characterized.

The characterization involves
(1) Diagonal antichains;
(2) Controlled age-change levels: first levels of pairs coding of edges

with a common vertex in H3;
(3) Controlled coding levels;
(4) Controlled paths: first level o↵ of leftmost branch.
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A Strong (Diagonal) Diary for H3
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BRD for pairs in Triangle-Free Henson Graph
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Diaries
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Finitely Constrained Binary FAP Classes

Fix a language L with finitely many relations of arity at most 2.

An L-structure is irreducible if any two vertices are in some relation:
e.g., finite clique, finite tournament, triangle with 2 red edges and one
blue edge.

Free amalgamation classes are exactly of the form Forb(F), where
F is a set of finite irreducible structures.

Theorem (Zucker, 2022)

All finitely constrined binary FAP classes have finite big Ramsey

degrees.
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BRD of Finitely Constrained Binary FAP Classes

Theorem (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker,
2021+)

The exact big Ramsey degrees of finitely constrained binary FAP

classes are characterized by the following:

1 Diagonal antichains

2 Controlled splitting levels

3 Controlled age-change levels (essential changes in the class of structures

which can be glued above a finite structure to make a member of K)

4 Controlled coding levels (reducing the ages of the extending class as

much as possible)

5 Controlled paths (only matter for non-trivial unary relations)
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An unexpected application of coding trees and forcing to structures
which behave like Q or the Rado graph:
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SDAP+ ) Simple BRD

Theorem (Coulson–D.–Patel)

Let L be a finite relational language and let K be a Fräıssé class with

Fräıssé limit satisfying the Substructure Disjoint Amalgamation

Property
+
. Let K = Flim(K).

I. K is indivisible.

II. If L has no relations of arity greater than two, then K has big

Ramsey degrees characterized by diagonal antichains.

This class of structures includes

Q, Qn [Laflamme, Nguyen Van Thé, Sauer], QQ, (QQ)n,

Rado graph, all structures in [LSV], generic k-partite graph,
ordered versions of these.
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Methodology for SDAP+ Structures

1 Given enumerated K, form the induced coding tree of 1-types.

2 Take a diagonal sub-coding tree.

3 Use forcing to prove a Halpern-Läuchli-style theorem on diagonal
coding trees.

This yields indivisibility for all arities. [Coulson–D.–Patel, Part I]

4 For structures with only unary and binary relations, do induction
argument to get one color per diagonal antichain representing a
finite structure. (no envelopes needed!)

5 Show the upper bounds in (4) are exact BRD.
[Coulson–D.–Patel, Part II]
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I. Big Ramsey Degree Characterizations and Methods

(c) Posets with Linear Extension and Carlson-Simpson’s

Ramsey Theorem for Parameter Words
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The Generic Partial Order with Linear Extension

Let P be the Fräıssé class of finite partial orders with linear
extensions. P = Flim(P).

L = {,�}. For A 2 P , (v  w ^ v 6= w) ) v � w .

Theorem (Hubička, 2020+)

The generic partial order with linear extension has finite big Ramsey

degrees.

Hubička also gave a short proof of finite BRD for the triangle-free
Henson graph. Interestingly, this proof directly yields indivisibility.
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The Generic Partial Order with Linear Extension

Theorem (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker,
2023+)

The generic partial order with linear extension has big Ramsey

degrees characterized by poset diaries.
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Words encoding partial orders

⌃ = {L,X,R} is the alphabet, ordered by L <lex X <lex R.

⌃⇤ is set of all finite words in the alphabet ⌃. lex extends to ⌃⇤.

w = w0w1 . . .w|w |�1

Definition (Partial order (⌃⇤,�))

For w ,w 0 2 ⌃⇤, we set w � w
0 if and only if there exists i such that:

1 0  i < min(|w |, |w 0|),
2 (wi ,w 0

i ) = (L,R),
3 wj lex w

0
j for every 0  j < i .

(⌃⇤,�) is a universal partial order and (⌃⇤,lex) is a linear
extension of it. (Hubička, 2020+)
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Carlson–Simpson Ramsey Theorem for Parameter Words

Let {�i : i < !} be parameters.

For n  !, given an n-parameter word W and a parameter word s of
length k  n, W (s) is the word created by replacing each occurrence
of �i , i < k , by si and truncating before first occurrence of �k in W .

Theorem (Carlson–Simpson, 1984)

If ⌃⇤
is colored with finitely many colors, then there is an

infinite-parameter word W such that W [⌃⇤] := {W (s) : s 2 ⌃⇤} is

monochromatic.
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Method Remarks

Apply Carlson–Simpson Theorem on a universal poset to get
upper bounds. Afterward, pull out an enumerated copy of P.

Steps are similar to classic approach with Milliken’s Theorem,
BUT it can handle posets and H3 (but not H4).

Forcing methods on coding trees fail for the generic partial order.
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Poset Diaries

For ` > 0 and words w ,w 0 2 ⌃⇤
` , write w E w

0 i↵ wi lex w
0
i for

every 0  i < `. w ? w
0 i↵ w and w

0 are E-incomparable.

S ✓ ⌃⇤ is a poset-diary if S is a diagonal antichain in (⌃⇤,v) and
precisely one of the following four conditions is satisfied for every level
` with 0  ` < supw2S |w |:
(1) Leaf.

(2) Splitting: One node splits into X,R.

(3) New ?.

(4) New relation �.

(3) and (4) are the ‘interesting levels’.
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Examples of Poset Diaries
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B
L L R

size2 X
R X

R

Hubika has calculated 464 posetdiaries
of partial orders of size 3.



I. Summary: BRD’s and Diaries

All Diaries characterizing exact big Ramsey degrees (so far) involve

(a) Diagonal antichains

(b) passing types or interesting levels

Some (restricted FAP, posets) also involve

(c) essential age-changes/interesting levels

Some (restricted FAP) also involve

(d) controlled coding levels and paths.

Minimize ages, but make the changes happen as slowly as possible.

Natasha Dobrinen Infinite Structural Ramsey Theory Notre Dame 37 / 56



II. Infinite-dimensional Ramsey Theory on !
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Ramsey subsets of the Baire space

A subset X of [!]! is Ramsey if each for M 2 [!]!, there is an
N 2 [M ]! such that [N ]! ✓ X or [N ]! \ X = ;.

Ramsey’s Theorem (topological form). For any m and r , if X ✓ [!]!

is a union of basic clopen sets of the form [s,!] where s 2 [!]m, then
X is Ramsey.
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Infinite-dimensional Ramsey Theory

A subset X of [!]! is Ramsey if each for M 2 [!]!, there is an
N 2 [M ]! such that [N ]! ✓ X or [N ]! \ X = ;.
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Infinite-dimensional Ramsey Theory

A subset X of [!]! is Ramsey if each for M 2 [!]!, there is an
N 2 [M ]! such that [N ]! ✓ X or [N ]! \ X = ;.

AC ) 9X ✓ [!]! which is not Ramsey.

Solution: restrict to ‘definable’ sets.
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Infinite-dimensional Ramsey Theory

A subset X of [!]! is Ramsey if each for M 2 [!]!, there is an
N 2 [M ]! such that [N ]! ✓ X or [N ]! \ X = ;.

Nash-Williams Thm. Clopen sets are Ramsey.

Galvin–Prikry Thm. Borel sets are Ramsey.

Silver Thm. Analytic sets are Ramsey.

Ellentuck Thm. A set is completely Ramsey i↵ it has the property
of Baire in the Ellentuck topology.
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Ellentuck Theorem

Ellentuck topology: refines the metric topology with basic open sets

[s,A] = {B 2 [!]! : s < B ✓ A}.

Theorem (Ellentuck)

A set X ✓ [!]! satisfies

(⇤) 8[s,A] 9B 2 [s,A] such that [s,B] ✓ X or [s,B] \ X = ;

i↵ X has the property of Baire with respect to the Ellentuck topology.

(⇤) is called completely Ramsey by Galvin–Prikry and Ramsey by Todorcevic.

The Ellentuck space is the prototype for topological Ramsey

spaces: Points are infinite sequences, topology is induced by finite
heads and infinite tails, and every subset with the property of Baire
satisfies (⇤).
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Examples of Topological Ramsey Spaces

Ellentuck space

Milliken strong trees

Carlson-Simpson Parameter Words

For more on (topological) Ramsey spaces, see Todorcevic’s 2010
book, Introduction to Ramsey spaces.
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III. Infinite-dimensional Structural Ramsey Theory
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KPT Question

Problem 11.2 in [KPT 2005]. Given a homogeneous structure K,

find the right notion of ‘definable set’ so that all definable subsets
of

�
K

K

�
are Ramsey.

We assume the universe of K is ! so that
�
K

K

�
is a subspace of [!]!.

Constraint: Big Ramsey degrees.

Must fix a big Ramsey structure and work on subcopies
(embeddings) of it.
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Infinite-Dimensional Ramsey Theory for SDAP+ structures

Theorem (D. 2022+)

Let K be a Fräıssé structure satisfying SDAP
+
with finitely many

relations of arity at most two. Let � be a strong diary representing

K. Then every Borel subset of R(�) is completely Ramsey.

Examples: Rado graph, k-partite graphs, ordered versions.

Proof follows Galvin-Prikry but uses forcing for a stronger Pigeonhole.

Corollary

If K has a certain amount of rigidity, Axiom A.3(2) of Todorcevic also

holds, so we obtain analogues of Ellentuck’s Theorem.

Examples: The rationals, Qn, QQ.
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Diagonal Diary for the Rado Graph
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We wanted to see if we could get a stronger 1-dimensional theorem
for the Rado graph and also for k-clique-free graphs.
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Infinite-dimensional Ramsey Theory

Theorem (D.–Zucker)

Fix a finitely constrained binary free amalgamation class K and let

K = Flim(K). Then K has infinite-dimensional Ramsey theory which

directly recovers exact big Ramsey degrees in (BCDHKVZ 2021).

The strength of the theorem ranges from ‘Souslin-measurable sets are
Ramsey’ (more than a Silver theorem analogue) to an analogue of the
Ellentuck Theorem.
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Abstract Ramsey Theorem

Theorem (Todorcevic)

Suppose that (R,S,,R) with finite restriction maps satisfying

axioms A.1–A.4, and that S is closed. Then the field of S-Ramsey

subsets of R is closed under the Souslin operation and it coincides

with the field of S-Baire subsets of R.

When R = S, this theorem implies the Abstract Ellentuck Theorem.

Theorem (D.–Zucker)

The conclusion of the above theorem still holds when axiom A.3(2)

is replaced by the weaker existence of an A.3(2)-ideal.
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IV. More Directions

Non-forcing proofs.

Higher arities.

Infinite-dimensional structural Ramsey theory.

Reverse Mathematics.

Topological dynamics correspondence.

When exactly does K having small Ramsey degrees imply
Flim(K) has finite big Ramsey degrees?

What amalgamation or other properties of K correspond to the
characterization of its big Ramsey degrees?
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Thank you very much!
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S-Baire and S-Ramsey sets

For X 2 S and a a finite approximation to some member of R,

[a,X ] = {A 2 R : A R X and a < A}

A set X ✓ R is S-Baire if for every non-empty basic open set [a,X ]
there is an a v b 2 AR and Y  X in S such that [b,Y ] 6= ; and
[b,Y ] ✓ X or [b,Y ] ✓ X c .

S-Ramsey requires b = a and Y 2 [depthX (a),X ].

Natasha Dobrinen Infinite Structural Ramsey Theory Notre Dame 53 / 56



Axioms for Ramsey Spaces

(R,S,,R) and finite restrictions maps;
 ✓ S ⇥ S and R ✓ R⇥ S.

A.1 (Sequencing) For any choice of P 2 {R,S},
(1) M|0 = N|0 for all M,N 2 P,

(2) M 6= N implies that M|n 6= N|n for some n,
(3) M|m = N|n implies m = n and M|k = N|k for all k  m.

A.2 (Finitization) There is a transitive, reflexive relation
fin ✓ AS ⇥AS and a relation R

fin ✓ AR⇥AR which are
finitizations of the relations  and R, meaning that the
following hold:
(1) {a : a R

fin x} and {y : y fin x} are finite for all x 2 S,
(2) X  Y i↵ 8m 9n such that X |m fin Y |n,
(3) A R X i↵ 8m 9n such that A|m R

fin X |n,
(4) 8a 2 AR 8x , y 2 AS [a R

fin x fin y ! a R
fin y ],

(5) 8a, b 2 AR 8x 2 AS [a v b and b R
fin x ! 9y v x a R

fin y ].
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Todorcevic’s Axioms 3 and 4 for Ramsey Spaces

A.3 (Amalgamation)
(1) 8a 2 AR 8Y 2 S,

[d = depthY (a) < 1 ! 8X 2 [d ,Y ] ([a,X ] 6= ;)],

(2) 8a 2 AR 8X ,Y 2 S, letting d = depthY (a),

[X  Y and [a,X ] 6= ; ! 9Y 0 2 [d ,Y ] ([a,Y 0
] ✓ [a,X ])].

A.4 (Pigeonhole) Suppose a 2 ARk and O ✓ ARk+1. Then for
every Y 2 S such that [a,Y ] 6= ;, there exists X 2 [Y |d ,Y ],
where d = depthY (a), such that the set {A|k+1 : A 2 [a,X ]} is
either contained in O or is disjoint from O.
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A.3(2)-ideals

An ideal I ✓ S ⇥ S is a set satisfying

(X ,Y ) 2 I ) X  Y .

(X ,Y ) 2 I and Z  X ) (Z ,Y ) 2 I.

I is an A.3(2)-ideal if additionally

8Y2S 8n<! 9Y 02S with (Y 0,Y ) 2 I and Y
0|n = Y |n.

If (X ,Y ) 2 I and a 2 ARX , there is Y 0 2 S with
Y

0 2 [depthY(a),Y], (Y 0,Y ) 2 I, and [a,Y 0] ✓ [a,X ].

Natasha Dobrinen Infinite Structural Ramsey Theory Notre Dame 56 / 56


