Infinite-dimensional Ramsey theory on binary relational homogeneous structures

Natasha Dobrinen

University of Notre Dame

Luminy Workshop on Set Theory October 9–13, 2023

Research supported by NSF grant DMS-2300896

Natasha Dobrinen

Ramsey theory

Theorem (Ramsey)

Given m, r and a coloring of $[\omega]^m$ into r colors, there is an $N \in [\omega]^\omega$ such that all members of $[N]^m$ have the same color.

A subset $\mathcal{X} \subseteq [\omega]^{\omega}$ is **Ramsey** if each for $M \in [\omega]^{\omega}$, there is an $N \in [M]^{\omega}$ such that $[N]^{\omega} \subseteq \mathcal{X}$ or $[N]^{\omega} \cap \mathcal{X} = \emptyset$.

Ramsey's Theorem (topological form). For any *m* and *r*, if $\mathcal{X} \subseteq [\omega]^{\omega}$ is a union of basic clopen sets of the form $[s, \omega]$ where $s \in [\omega]^m$, then \mathcal{X} is Ramsey.

Infinite-dimensional Ramsey Theory

A subset $\mathcal{X} \subseteq [\omega]^{\omega}$ is **Ramsey** if each for $M \in [\omega]^{\omega}$, there is an $N \in [M]^{\omega}$ such that $[N]^{\omega} \subseteq \mathcal{X}$ or $[N]^{\omega} \cap \mathcal{X} = \emptyset$.

Infinite-dimensional Ramsey Theory

A subset $\mathcal{X} \subseteq [\omega]^{\omega}$ is **Ramsey** if each for $M \in [\omega]^{\omega}$, there is an $N \in [M]^{\omega}$ such that $[N]^{\omega} \subseteq \mathcal{X}$ or $[N]^{\omega} \cap \mathcal{X} = \emptyset$.

Axiom of Choice $\implies \exists \mathcal{X} \subseteq [\omega]^{\omega}$ which is not Ramsey.

Solution: restrict to 'definable' sets.

Infinite-dimensional Ramsey Theory

A subset $\mathcal{X} \subseteq [\omega]^{\omega}$ is **Ramsey** if each for $M \in [\omega]^{\omega}$, there is an $N \in [M]^{\omega}$ such that $[N]^{\omega} \subseteq \mathcal{X}$ or $[N]^{\omega} \cap \mathcal{X} = \emptyset$.

Nash-Williams. Clopen sets are Ramsey.

Galvin. Open sets are Ramsey.

Galvin–Prikry. Borel sets are Ramsey.

Silver. Analytic sets are Ramsey.

Ellentuck. A set is completely Ramsey iff it has the property of Baire in the Ellentuck topology.

Louveau. Local version for tails in a Ramsey ultrafilter.

Ellentuck Theorem

Ellentuck topology: refines the metric topology with basic open sets $[s, A] = \{B \in [\omega]^{\omega} : s \sqsubset B \subseteq A\}.$

Ellentuck Theorem

Ellentuck topology: refines the metric topology with basic open sets $[s, A] = \{B \in [\omega]^{\omega} : s \sqsubset B \subseteq A\}.$

Theorem (Ellentuck)

A set $\mathcal{X} \subseteq [\omega]^{\omega}$ satisfies

 $(*) \qquad \forall [s,A] \;\; \exists B \in [s,A] \; \textit{such that} \; [s,B] \subseteq \mathcal{X} \; \textit{or} \; [s,B] \cap \mathcal{X} = \emptyset$

iff \mathcal{X} has the property of Baire with respect to the Ellentuck topology.

(*) is called completely Ramsey by Galvin-Prikry and Ramsey by Todorcevic.

Ellentuck Theorem

Ellentuck topology: refines the metric topology with basic open sets $[s, A] = \{B \in [\omega]^{\omega} : s \sqsubset B \subseteq A\}.$

Theorem (Ellentuck)

A set $\mathcal{X} \subseteq [\omega]^{\omega}$ satisfies

 $(*) \qquad \forall [s,A] \;\; \exists B \in [s,A] \; \textit{such that} \; [s,B] \subseteq \mathcal{X} \; \textit{or} \; [s,B] \cap \mathcal{X} = \emptyset$

iff \mathcal{X} has the property of Baire with respect to the Ellentuck topology.

(*) is called completely Ramsey by Galvin–Prikry and Ramsey by Todorcevic.

Topological Ramsey spaces: Points are infinite sequences, topology is induced by finite heads and infinite tails, and every subset with the property of Baire satisfies (*). (Carlson–Simpson 1990; Todorcevic 2010.)

Natasha Dobrinen

Part of Question 11.2 of Kechris-Pestov-Todorcevic

Develop infinite-dimensional Ramsey theory for the

- (i) Rationals;
- (ii) Ordered Rado graph;
- (iii) *k*-clique-free ordered Henson graphs;
- (iv) Random A-free ordered hypergraph, where A is a set of finite irreducible ordered structures;
- (v) Ordered rational Urysohn space;
- (vi) \aleph_0 -dimensional vector space over a finite field with the canonical ordering;
- (vii) The countable atomless Boolean algebra with the canoncial ordering.

A successful topological characterization should recover big Ramsey degrees exactly.

Part of Question 11.2 of Kechris-Pestov-Todorcevic

Develop infinite-dimensional Ramsey theory for the

- (i) Rationals; D. 2022
- (ii) Ordered Rado graph; D. 2022
- (iii) k-clique-free ordered Henson graphs; D 2 ucker 2023
- (iv) Random A-free ordered hypergraph, where A is a set of finite irreducible ordered structures;
- (v) Ordered rational Urysohn space;
- (vi) ℵ₀-dimensional vector space over a finite field with the canonical ordering; Impossible for Fp, p≥3. Nguyen Van Thé 2008
- (vii) The countable atomless Boolean algebra with the canoncial ordering.

A successful topological characterization should recover big Ramsey degrees exactly.

(Infinite) Homogeneous Structures

A structure K is **homogeneous** if every isomorphism between two finite induced substructures of K extends to an automorphism of K.

Homogeneous structures are Fraïssé limits. Examples include the previous as well as the

- (\mathcal{R}, E) Rado graph
- (\mathcal{H}_k, E) k-clique-free Henson graphs, $k \geq 3$
- generic *k*-partite graph
- generic digraph
- random graph with Red and Blue edges omitting RRB and RBB triangles and Red 4-cliques
- generic partial order
- rationally ordered versions: ($\mathcal{R}, E, <$), ($\mathcal{H}_k, E, <$), ...
- Free superpositions of the above

$$\mathsf{K} o^* (\mathsf{K})^{\mathsf{K}}$$

- Well-ordering **K** induces
 - a metric topology, like Baire space.
 - a tree of 1-types, which is preserved in any subcopy of **K**, inducing Big Ramsey Degrees (BRD).

Let ${\mathcal K}$ be a Fraïssé class with limit ${\bf K}.$

K has **finite big Ramsey degrees** if for each finite $\mathbf{A} \leq \mathbf{K}$, $\exists t$ such that $\forall r, \forall \chi : \binom{\mathsf{K}}{\mathsf{A}} \to r, \exists \mathsf{K}' \in \binom{\mathsf{K}}{\mathsf{K}}$ such that $|\chi \upharpoonright \binom{\mathsf{K}'}{\mathsf{A}}| \leq t$.

 $\mathbf{K}
ightarrow (\mathbf{K})^{\mathbf{A}}_{r,t}$

The **big Ramsey degree** of **A** in $\mathbf{K} = BRD(\mathbf{A}, \mathbf{K}) = BRD(\mathbf{A})$ is the least such *t*.

• (Hjorth 2008) If $|Aut(\mathbf{K})| > 1$, then \mathcal{K} has some BRD > 1.

Let ${\mathcal K}$ be a Fraïssé class with limit ${\bf K}.$

K has **finite big Ramsey degrees** if for each finite $\mathbf{A} \leq \mathbf{K}$, $\exists t$ such that $\forall r, \forall \chi : \binom{\mathsf{K}}{\mathsf{A}} \to r, \exists \mathsf{K}' \in \binom{\mathsf{K}}{\mathsf{K}}$ such that $|\chi \upharpoonright \binom{\mathsf{K}'}{\mathsf{A}}| \leq t$.

 $\mathbf{K}
ightarrow (\mathbf{K})^{\mathbf{A}}_{r,t}$

The **big Ramsey degree** of **A** in $\mathbf{K} = BRD(\mathbf{A}, \mathbf{K}) = BRD(\mathbf{A})$ is the least such *t*.

• (Hjorth 2008) If |Aut(K)| > 1, then \mathcal{K} has some BRD > 1.

BRD's are really about the optimal structural expansions for which Ramsey's Theorem holds. (canonical partitions) LSV Zucker's notion of 'big Ramsey structure'.

Big Ramsey Degree results, a sampling

- 1933. BRD(Pairs, $\mathbb{Q}) \geq 2$. (Sierpiński)
- 1975. BRD(Edge, \mathcal{R}) \geq 2. (Erdős, Hajnal, Pósa)
- 1979. (\mathbb{Q} , <): All BRD computed. (D. Devlin)
- 1986. BRD(Vertex, \mathcal{H}_3) = 1. (Komjáth, Rödl)
- 1989. BRD(Vertex, \mathcal{H}_n) = 1. (El-Zahar, Sauer)
- 1996. BRD(Edge, \mathcal{R}) = 2. (Pouzet, Sauer)
- 1998. BRD(Edge, \mathcal{H}_3) = 2. (Sauer)
- 2006, 2008. The Rado graph: All BRD characterized; computed. (Laflamme, Sauer, Vuksanović); (J. Larson)
- 2008. Ultrametric spaces with finite distance set: All BRD characterized. (Nguyen Van Thé)
- 2010. Dense Local Order S(2): All BRD computed. Also Q_n. (Laflamme, Nguyen Van Thé, Sauer)

Big Ramsey Degree results, a sampling

- 1933. BRD(Pairs, \mathbb{Q}) \geq 2. (Sierpiński)
- 1975. BRD(Edge, \mathcal{R}) \geq 2. (Erdős, Hajnal, Pósa)
- 1979. (\mathbb{Q} , <): All BRD computed. (D. Devlin)
- 1986. BRD(Vertex, \mathcal{H}_3) = 1. (Komjáth, Rödl)
- 1989. BRD(Vertex, \mathcal{H}_n) = 1. (El-Zahar, Sauer)
- 1996. BRD(Edge, \mathcal{R}) = 2. (Pouzet, Sauer)
- 1998. BRD(Edge, \mathcal{H}_3) = 2. (Sauer)
- 2006, 2008. The Rado graph: All BRD characterized; computed. (Laflamme, Sauer, Vuksanović); (J. Larson)
- 2008. Ultrametric spaces with finite distance set: All BRD characterized. (Nguyen Van Thé)
- 2010. Dense Local Order S(2): All BRD computed. Also Q_n . (Laflamme, Nguyen Van Thé, Sauer)

Natasha Dobrinen

∞ Structural RT via coding trees and forcing ${}_{\rm (arxiv \; dates)}$

- 2017. Triangle-free Henson graphs: FBRD foreshadowing ∞-diml Exact bounds via small tweak in 2020. (D.) and independently (BDHKVZ)
- 2019. *k*-clique-free Henson graphs: Upper Bounds. (D.)
- 2019. ∞ -dimensional RT for Borel sets of Rado graphs. (D.)
- 2020. Binary rel. Forb(\mathcal{F}): Upper Bounds. (Zucker)
- 2020. Exact BRD for binary SDAP⁺ structures. (Coulson, D., Patel)
- 2021. Binary rel. Forb(F): Exact BRD. (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker)
- 2022. ∞ -dimensional RT structures with SDAP⁺. recovers Exact BRD. (D.)
- 2023+. ∞ -dimensional RT for finitely constrained binary FAP. recovers Exact BRD. (D., Zucker)

∞ Structural RT via coding trees and forcing ${}_{\rm (arxiv \; dates)}$

- 2017. Triangle-free Henson graphs: FBRD foreshadowing ∞ -diml. Exact bounds via small tweak in 2020. (D.) and independently (BDHKVZ)
- 2019. *k*-clique-free Henson graphs: Upper Bounds. (D.)
- 2019. ∞ -dimensional RT for Borel sets of Rado graphs. (D.)
- 2020. Binary rel. Forb(\mathcal{F}): Upper Bounds. (Zucker)
- 2020. Exact BRD for binary SDAP⁺ structures. (Coulson, D., Patel)
- 2021. Binary rel. Forb(F): Exact BRD. (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker)
- 2022. ∞-dimensional RT structures with SDAP⁺. recovers Exact BRD. (D.)
- 2023+. ∞-dimensional RT for finitely constrained binary FAP. recovers Exact BRD. (D., Zucker)

Developments not using forcing (arxiv dates)

- 2018. Certain homogeneous metric spaces: FBRD. (Mašulović) category th.
- 2019. 3-uniform hypergraphs: FBRD. (Balko, Chodounský, Hubička, Konečný, Vena) Milliken Theorem.
- 2020. Circular directed graphs: Exact BRD Computed. (Dasilva Barbosa) category theory.
- 2020. Homogeneous partial order: FBRD. (Hubička) Ramsey space of parameter words. First non-forcing proof for H₃.
- 2021. Homogenous graphs with forbidden cycles (metric spaces): FBRD. (Balko, Chodounský, Hubička, Konečný, Nešetřil, Vena) param. words.
- 2023. Homogeneous partial order: Exact BRD. (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker) parameter words.
- 2023. Infinite languages, unrestricted structures: FBRD. (Braunfeld, Chodounský, de Rancourt, Hubička, Kawach, Konečný. Laver Theorem.
- 2023+. Many Forb(\mathcal{F}), all arities, and more: FBRD. (BCDHKNVZ) New methods.
- 2023+. Pseudotrees. (Chodounský, D., Eskew, Weinert)

Theorem (Todorcevic)

Suppose we are given a structure $(\mathcal{R}, \mathcal{S}, \leq, \leq_{\mathcal{R}})$ with finite restrictions maps satisfying Axioms A.1 to A.4, and that \mathcal{S} is closed. Then the field of \mathcal{S} -Ramsey subsets of \mathcal{R} is closed under the Souslin operation and it coincides with the field of \mathcal{S} -Baire subsets of \mathcal{R} .

 $\mathcal{R} = \mathcal{S} \implies$ Abstract Ellentuck Theorem

So if we could just show that our spaces of subcopies of ${\bf K}$ satisfy these four axioms, we'd be done.

Theorem (Todorcevic)

Suppose we are given a structure $(\mathcal{R}, \mathcal{S}, \leq, \leq_{\mathcal{R}})$ with finite restrictions maps satisfying Axioms A.1 to A.4, and that \mathcal{S} is closed. Then the field of \mathcal{S} -Ramsey subsets of \mathcal{R} is closed under the Souslin operation and it coincides with the field of \mathcal{S} -Baire subsets of \mathcal{R} .

 $\mathcal{R} = \mathcal{S} \implies$ Abstract Ellentuck Theorem

So if we could just show that our spaces of subcopies of ${\bf K}$ satisfy these four axioms, we'd be done. BUT

• BRDs preclude working with spaces of ALL subcopies of K.

• A.3(2) generally usually fails for Fraïssé structures.

Big Ramsey degrees of a binary relational homogeneous structure ${\bf K}$ are characterized via enumerating the universe of ${\bf K}$ and forming the coding tree of 1-types and

- I. Diagonal antichains (in the coding tree of 1-types);
- II. Passing types;
- III. Forbidden substructures also include
 - I(a). Controlled splitting levels;
 - II(a). Controlled coding triples;
 - III(a). Maximal paths;
 - III(b). Essential age-change levels (incremental changes in how much of a forbidden substructure is coded).

Any infinite-dimensional structural Ramsey theory must start by fixing a diary and then working with the space of all subcopies of that diary.

Infinite-Dimensional Ramsey Theory for SDAP⁺ structures

Theorem (D.)

- Let K be a Fraïssé structure satisfying SDAP⁺ with finitely many relations of arity at most two. Then for each (good) diary, the space of isomorphic subdiaries satisfies a Galvin-Prikry Theorem.
- If K has a certain amount of rigidity, Axiom A.3(2) of Todorcevic also holds, so we obtain analogues of Ellentuck's Theorem.

Proof Outline:

- (1) "Force" a strengthened Pigeonhole Lemma for colorings of copies of a given level set.
- (2) Prove that every Nash-Williams family restricts to a front or Ø on some member of the space. uses 'combinatorial forcing'
- (3) Use the PL to show that opens sets are CR* and that countable unions of CR* sets are CR*.
- (4) Complements of CR* sets are CR*, hence Borel sets are CR*.

A structure is **irreducible** if any two vertices are in some relation: e.g., finite clique, finite tournament, triangle with 2 red edges and one green edge.

Free amalgamation classes are exactly of the form $Forb(\mathcal{F})$, where \mathcal{F} is a set of finite irreducible structures.

Finitely constrained binary relational FAP classes

A structure is **irreducible** if any two vertices are in some relation: e.g., finite clique, finite tournament, triangle with 2 red edges and one green edge.

Free amalgamation classes are exactly of the form $Forb(\mathcal{F})$, where \mathcal{F} is a set of finite irreducible structures.

Theorem (D., Zucker)

Let **K** be a finitely constrained homogeneous structure with free amalgamation and finitely many relations of arity ≤ 2 . Then **K** has an infinite-dimensional Ramsey theory which directly recovers the exact big Ramsey degrees in (BCDHKVZ 2021).

Proof Outline:

- (1) Prove that a weaker version of A.3 suffices to guarantee the Abstract Ramsey Theorem.
- (2) Show that certain two-sorted spaces of diaries satisfy weakened A.3(2).
- (3) "Force" a Pigeonhole Lemma for colorings of copies of a given level set.

Enumerating the vertices of \mathcal{H}_3 induces the tree possibilities.

A Strong Diary Δ for \mathcal{H}_3

For $X \in S$ and a finite approximation *a* to some member of \mathcal{R} ,

$$[a, X] = \{A \in \mathcal{R} : A \leq_{\mathcal{R}} X \text{ and } a \sqsubset A\}$$

A set $\mathcal{X} \subseteq \mathcal{R}$ is \mathcal{S} -**Baire** if for every non-empty basic open set [a, X] there is an $a \sqsubseteq b \in \mathcal{AR}$ and $Y \leq X$ in \mathcal{S} such that $[b, Y] \neq \emptyset$ and $[b, Y] \subseteq \mathcal{X}$ or $[b, Y] \subseteq \mathcal{X}^c$.

S-**Ramsey** requires b = a and $Y \in [depth_X(a), X]$.

Axioms A.3 and A.4 for Ramsey Spaces

A.3 (Amalgamation)
(1)
$$\forall a \in \mathcal{AR} \ \forall Y \in \mathcal{S}$$
,
 $[d = \operatorname{depth}_{Y}(a) < \infty \rightarrow \forall X \in [d, Y] \ ([a, X] \neq \emptyset)]$,
(2) $\forall a \in \mathcal{AR} \ \forall X, Y \in \mathcal{S}$, letting $d = \operatorname{depth}_{Y}(a)$,
 $[X \leq Y \text{ and } [a, X] \neq \emptyset \rightarrow \exists Y' \in [d, Y] \ ([a, Y'] \subseteq [a, X])]$.

A.4 (Pigeonhole) Suppose $a \in \mathcal{AR}_k$ and $\mathcal{O} \subseteq \mathcal{AR}_{k+1}$. Then for every $Y \in \mathcal{S}$ such that $[a, Y] \neq \emptyset$, there exists $X \in [Y|_d, Y]$, where $d = \operatorname{depth}_Y(a)$, such that the set $\{A|_{k+1} : A \in [a, X]\}$ is either contained in \mathcal{O} or is disjoint from \mathcal{O} .

An ideal $\mathcal{I} \subseteq \mathcal{S} \times \mathcal{S}$ is a set satisfying

•
$$(X, Y) \in \mathcal{I} \Rightarrow X \leq Y.$$

• $(X, Y) \in \mathcal{I}$ and $Z \leq X \Rightarrow (Z, Y) \in \mathcal{I}$.

 \mathcal{I} is an A.3(2)-ideal if additionally

- $\forall Y \in S \ \forall n < \omega \ \exists Y' \in S \ \text{with} \ (Y', Y) \in \mathcal{I} \ \text{and} \ Y'|_n = Y|_n.$
- If $(X, Y) \in \mathcal{I}$ and $a \in \mathcal{AR}^{\mathcal{X}}$, there is $Y' \in \mathcal{S}$ with $Y' \in [depth_{Y}(a), Y]$, $(Y', Y) \in \mathcal{I}$, and $[a, Y'] \subseteq [a, X]$.

An ideal $\mathcal{I} \subseteq \mathcal{S} \times \mathcal{S}$ is a set satisfying

•
$$(X,Y) \in \mathcal{I} \Rightarrow X \leq Y.$$

• $(X, Y) \in \mathcal{I}$ and $Z \leq X \Rightarrow (Z, Y) \in \mathcal{I}$.

 \mathcal{I} is an A.3(2)-ideal if additionally

- $\forall Y \in S \ \forall n < \omega \ \exists Y' \in S \ \text{with} \ (Y', Y) \in \mathcal{I} \ \text{and} \ Y'|_n = Y|_n.$
- If $(X, Y) \in \mathcal{I}$ and $a \in \mathcal{AR}^{\bigstar}$, there is $Y' \in \mathcal{S}$ with $Y' \in [depth_Y(a), Y]$, $(Y', Y) \in \mathcal{I}$, and $[a, Y'] \subseteq [a, X]$.

An ideal $\mathcal{I} \subseteq \mathcal{S} \times \mathcal{S}$ is a set satisfying

•
$$(X, Y) \in \mathcal{I} \Rightarrow X \leq Y.$$

• $(X, Y) \in \mathcal{I}$ and $Z \leq X \Rightarrow (Z, Y) \in \mathcal{I}$.

 \mathcal{I} is an A.3(2)-ideal if additionally

- $\forall Y \in \mathcal{S} \ \forall n < \omega \ \exists Y' \in \mathcal{S} \ \text{with} \ (Y', Y) \in \mathcal{I} \ \text{and} \ Y'|_n = Y|_n.$
- If $(X, Y) \in \mathcal{I}$ and $a \in \mathcal{AR}^{X}$, there is $Y' \in \mathcal{S}$ with $Y' \in [depth_{Y}(a), Y]$, $(Y', Y) \in \mathcal{I}$, and $[a, Y'] \subseteq [a, X]$.

Theorem (D., Zucker)

Suppose $(\mathcal{R}, \mathcal{S}, \leq, \leq_{\mathcal{R}})$ satisfies axioms A.1, A.2, A.3(1), and A.4, and suppose there is an A3(2)-ideal. Then the conclusion of the Abstract Ramsey Theorem holds.

Theorem (D., Zucker)

Suppose $(\mathcal{R}, \mathcal{S}, \leq, \leq_{\mathcal{R}})$ satisfies axioms A.1, A.2, A.3(1), and A.4, and suppose there is an A3(2)-ideal. Then the conclusion of the Abstract Ramsey Theorem holds.

Proof follows Chapter 4 of Todorcevic, making the necessary changes. Uses combinatorial forcing And now, for something less forced...

Reverse Math and Big Ramsey Degrees

Anglès d'Auriac, Cholak, Dzafarov, Monin, Patey, *Milliken's tree theorem and its applications: a computability-theoretic perspective*, AMS Memoirs 2023. 136 pp.

 $FBRD(H_3) =$ "The triangle-free Henson graph has finite BRD."

Theorem (Anglès d'Auriac, Liu, Mignoty, Patey, 2022)

Carlson-Simpson's Lemma is provable in ACA_0^+ . Hence, via Hubička's work, $ACA_0^+ \Longrightarrow FBRD(\mathcal{H}_3)$.

Theorem (Cholak, D., McCoy, 2023+)

 $\operatorname{FBRD}(\mathcal{H}_3) \Longrightarrow \operatorname{ACA}_0.$

D., Borel sets of Rado graphs and Ramsey's Theorem, arxXiv:1904.00266

D., Infinite-dimensional Ramsey theory for homogeneous structures with $SDAP^+$, arXiv:2203.00169

D.–Zucker, Infinite-dimensional Ramsey theory for binary free amalgamation classes, arXiv:2303.04246

An expository introduction to BRD:

D., Ramsey theory of homogeneous structures: current trends and open problems, Proceedings of the 2022 ICM, to appear. arXiv:2110.00655

Thank you very much!