Infinite-dimensional Ramsey theory on binary relational homogeneous structures

Natasha Dobrinen
University of Notre Dame

Luminy Workshop on Set Theory
October 9-13, 2023

Research supported by NSF grant DMS-2300896

Ramsey's Theorem (finite-dimensional)

Theorem (Ramsey)

Given m, r and a coloring of $[\omega]^{m}$ into r colors, there is an $N \in[\omega]^{\omega}$ such that all members of $[N]^{m}$ have the same color.

A subset $\mathcal{X} \subseteq[\omega]^{\omega}$ is Ramsey if each for $M \in[\omega]^{\omega}$, there is an $N \in[M]^{\omega}$ such that $[N]^{\omega} \subseteq \mathcal{X}$ or $[N]^{\omega} \cap \mathcal{X}=\emptyset$.

Ramsey's Theorem (topological form). For any m and r, if $\mathcal{X} \subseteq[\omega]^{\omega}$ is a union of basic clopen sets of the form $[s, \omega]$ where $s \in[\omega]^{m}$, then \mathcal{X} is Ramsey.

Infinite-dimensional Ramsey Theory

A subset $\mathcal{X} \subseteq[\omega]^{\omega}$ is Ramsey if each for $M \in[\omega]^{\omega}$, there is an $N \in[M]^{\omega}$ such that $[N]^{\omega} \subseteq \mathcal{X}$ or $[N]^{\omega} \cap \mathcal{X}=\emptyset$.

Infinite-dimensional Ramsey Theory

A subset $\mathcal{X} \subseteq[\omega]^{\omega}$ is Ramsey if each for $M \in[\omega]^{\omega}$, there is an $N \in[M]^{\omega}$ such that $[N]^{\omega} \subseteq \mathcal{X}$ or $[N]^{\omega} \cap \mathcal{X}=\emptyset$.

Axiom of Choice $\Longrightarrow \exists \mathcal{X} \subseteq[\omega]^{\omega}$ which is not Ramsey. Solution: restrict to 'definable' sets.

Infinite-dimensional Ramsey Theory

A subset $\mathcal{X} \subseteq[\omega]^{\omega}$ is Ramsey if each for $M \in[\omega]^{\omega}$, there is an $N \in[M]^{\omega}$ such that $[N]^{\omega} \subseteq \mathcal{X}$ or $[N]^{\omega} \cap \mathcal{X}=\emptyset$.

Nash-Williams. Clopen sets are Ramsey.
Galvin. Open sets are Ramsey.
Galvin-Prikry. Borel sets are Ramsey.
Silver. Analytic sets are Ramsey.
Ellentuck. A set is completely Ramsey iff it has the property of Baire in the Ellentuck topology.

Louveau. Local version for tails in a Ramsey ultrafilter.

Ellentuck Theorem

Ellentuck topology: refines the metric topology with basic open sets

$$
[s, A]=\left\{B \in[\omega]^{\omega}: s \sqsubset B \subseteq A\right\} .
$$

Ellentuck Theorem

Ellentuck topology: refines the metric topology with basic open sets

$$
[s, A]=\left\{B \in[\omega]^{\omega}: s \sqsubset B \subseteq A\right\} .
$$

Theorem (Ellentuck)

A set $\mathcal{X} \subseteq[\omega]^{\omega}$ satisfies
(*) $\forall[s, A] \exists B \in[s, A]$ such that $[s, B] \subseteq \mathcal{X}$ or $[s, B] \cap \mathcal{X}=\emptyset$ iff \mathcal{X} has the property of Baire with respect to the Ellentuck topology.
(*) is called completely Ramsey by Galvin-Prikry and Ramsey by Todorcevic.

Ellentuck Theorem

Ellentuck topology: refines the metric topology with basic open sets

$$
[s, A]=\left\{B \in[\omega]^{\omega}: s \sqsubset B \subseteq A\right\} .
$$

Theorem (Ellentuck)

A set $\mathcal{X} \subseteq[\omega]^{\omega}$ satisfies
(*) $\forall[s, A] \exists B \in[s, A]$ such that $[s, B] \subseteq \mathcal{X}$ or $[s, B] \cap \mathcal{X}=\emptyset$
iff \mathcal{X} has the property of Baire with respect to the Ellentuck topology.
$(*)$ is called completely Ramsey by Galvin-Prikry and Ramsey by Todorcevic.
Topological Ramsey spaces: Points are infinite sequences, topology is induced by finite heads and infinite tails, and every subset with the property of Baire satisfies $(*)$.
(Carlson-Simpson 1990; Todorcevic 2010.)

Part of Question 11.2 of Kechris-Pestov-Todorcevic

Develop infinite-dimensional Ramsey theory for the
(i) Rationals;
(ii) Ordered Rado graph;
(iii) k-clique-free ordered Henson graphs;
(iv) Random \mathcal{A}-free ordered hypergraph, where \mathcal{A} is a set of finite irreducible ordered structures;
(v) Ordered rational Urysohn space;
(vi) \aleph_{0}-dimensional vector space over a finite field with the canonical ordering;
(vii) The countable atomless Boolean algebra with the canoncial ordering.

A successful topological characterization should recover big Ramsey degrees exactly.

Part of Question 11.2 of Kechris-Pestov-Todorcevic

Develop infinite-dimensional Ramsey theory for the
(i) Rationals; D. 2022
(ii) Ordered Rado graph; D. 2022
(iii) k-clique-free ordered Henson graphs; D.- Z ucker 2023
(iv) Random \mathcal{A}-free ordered hypergraph, where \mathcal{A} is a set of finite irreducible ordered structures;
(v) Ordered rational Urysohn space;
(vi) \aleph_{0}-dimensional vector space over a finite field with the canonical ordering; Impossible for $\mathbb{F}_{p,} p \geq 3$. Nguyen Van The 2008
(vii) The countable atomless Boolean algebra with the canoncial ordering.

A successful topological characterization should recover big Ramsey degrees exactly.

(Infinite) Homogeneous Structures

A structure \mathbf{K} is homogeneous if every isomorphism between two finite induced substructures of \mathbf{K} extends to an automorphism of \mathbf{K}.

Homogeneous structures are Fraïssé limits. Examples include the previous as well as the

- (\mathcal{R}, E) Rado graph
- $\left(\mathcal{H}_{k}, E\right)$-clique-free Henson graphs, $k \geq 3$
- generic k-partite graph
- generic digraph
- random graph with Red and Blue edges omitting RRB and RBB triangles and Red 4-cliques
- generic partial order
- rationally ordered versions: $(\mathcal{R}, E,<),\left(\mathcal{H}_{k}, E,<\right), \ldots$
- Free superpositions of the above

Infinite-Dimensional Structural Ramsey Theory

$$
\mathrm{K} \rightarrow^{*}(\mathrm{~K})^{K}
$$

- Well-ordering K induces
- a metric topology, like Baire space.
- a tree of 1-types, which is preserved in any subcopy of \mathbf{K}, inducing Big Ramsey Degrees (BRD).

Big Ramsey Degrees

Let \mathcal{K} be a Fraïssé class with limit \mathbf{K}.
\mathbf{K} has finite big Ramsey degrees if for each finite $\mathbf{A} \leq \mathbf{K}, \exists t$ such that $\forall r, \forall \chi:\binom{\mathbf{K}}{\mathbf{A}} \rightarrow r, \exists \mathbf{K}^{\prime} \in\binom{\mathbf{K}}{\mathbf{K}}$ such that $\left|\chi \upharpoonright\left(\begin{array}{c}\mathbf{K}_{\mathbf{A}}^{\prime}\end{array}\right)\right| \leq t$.

$$
\mathbf{K} \rightarrow(\mathbf{K})_{r, t}^{\mathbf{A}}
$$

The big Ramsey degree of \mathbf{A} in $\mathbf{K}=\operatorname{BRD}(\mathbf{A}, \mathbf{K})=\operatorname{BRD}(\mathbf{A})$ is the least such t.

- (Hjorth 2008) If $|\operatorname{Aut}(\mathbf{K})|>1$, then \mathcal{K} has some BRD >1.

Big Ramsey Degrees

Let \mathcal{K} be a Fraïssé class with limit \mathbf{K}.
\mathbf{K} has finite big Ramsey degrees if for each finite $\mathbf{A} \leq \mathbf{K}, \exists t$ such that $\forall r, \forall \chi:\binom{\mathbf{K}}{\mathbf{A}} \rightarrow r, \exists \mathbf{K}^{\prime} \in\binom{\mathbf{K}}{\mathbf{K}}$ such that $\left|\chi \upharpoonright\left(\begin{array}{l}\mathbf{K}_{\mathbf{A}}^{\prime}\end{array}\right)\right| \leq t$.

$$
\mathbf{K} \rightarrow(\mathbf{K})_{r, t}^{\mathbf{A}}
$$

The big Ramsey degree of \mathbf{A} in $\mathbf{K}=\operatorname{BRD}(\mathbf{A}, \mathbf{K})=\operatorname{BRD}(\mathbf{A})$ is the least such t.

- (Hjorth 2008) If $|\operatorname{Aut}(\mathbf{K})|>1$, then \mathcal{K} has some BRD >1.

BRD's are really about the optimal structural expansions for which Ramsey's Theorem holds. (canonical partitions) LSV Zucker's notion of 'big Ramsey structure'.

Big Ramsey Degree results, a sampling

- 1933. BRD (Pairs, $\mathbb{Q}) \geq 2$. (Sierpiński)
- 1975. BRD(Edge, $\mathcal{R}) \geq 2$. (Erdős, Hajnal, Pósa)
- 1979. ($\mathbb{Q},<$): All BRD computed. (D. Devlin)
- 1986. $\operatorname{BRD}\left(\right.$ Vertex, $\left.\mathcal{H}_{3}\right)=1$. (Komjáth, Rödl)
- 1989. BRD (Vertex, $\left.\mathcal{H}_{n}\right)=1$. (El-Zahar, Sauer)
- 1996. BRD $($ Edge, $\mathcal{R})=2$. (Pouzet, Sauer)
- 1998. BRD(Edge, $\left.\mathcal{H}_{3}\right)=2$. (Sauer)
- 2006, 2008. The Rado graph: All BRD characterized; computed. (Laflamme, Sauer, Vuksanović); (J. Larson)
- 2008. Ultrametric spaces with finite distance set: All BRD characterized. (Nguyen Van Thé)
- 2010. Dense Local Order S(2): All BRD computed. Also \mathbb{Q}_{n}. (Laflamme, Nguyen Van Thé, Sauer)

Big Ramsey Degree results, a sampling

- 1933. BRD (Pairs, $\mathbb{Q}) \geq 2$. (Sierpiński)
- 1975. BRD(Edge, $\mathcal{R}) \geq 2$. (Erdős, Hajnal, Pósa)
- 1979. ($\mathbb{Q},<$): All BRD computed. (D. Devlin)
- 1986. $\operatorname{BRD}\left(\right.$ Vertex, $\left.\mathcal{H}_{3}\right)=1$. (Komjáth, Rödl)
- 1989. BRD (Vertex, $\left.\mathcal{H}_{n}\right)=1$. (El-Zahar, Sauer)
- 1996. BRD $($ Edge, $\mathcal{R})=2$. (Pouzet, Sauer)
- 1998. BRD(Edge, $\left.\mathcal{H}_{3}\right)=2$. (Sauer)
- 2006, 2008. The Rado graph: All BRD characterized; computed. (Laflamme, Sauer, Vuksanović); (J. Larson)
- 2008. Ultrametric spaces with finite distance set: All BRD characterized. (Nguyen Van Thé)
- 2010. Dense Local Order S(2): All BRD computed. Also \mathbb{Q}_{n}. (Laflamme, Nguyen Van Thé, Sauer)

∞ Structural RT via coding trees and forcing (arxiv dates)

- 2017. Triangle-free Henson graphs: FBRD foreshadowing ∞-diml Exact bounds via small tweak in 2020. (D.) and independently (BDHKVZ)
- 2019. k-clique-free Henson graphs: Upper Bounds. (D.)
- 2019. ∞-dimensional RT for Borel sets of Rado graphs. (D.)
- 2020. Binary rel. Forb $(\mathcal{F}):$ Upper Bounds. (Zucker)
- 2020. Exact BRD for binary SDAP ${ }^{+}$structures. (Coulson, D., Patel)
- 2021. Binary rel. Forb (\mathcal{F}) : Exact BRD. (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker)
- 2022. ∞-dimensional RT structures with SDAP $^{+}$. recovers Exact BRD. (D.)
- 2023+. ∞-dimensional RT for finitely constrained binary FAP. recovers Exact BRD. (D., Zucker)

∞ Structural RT via coding trees and forcing (arxiv dates)

- 2017. Triangle-free Henson graphs: FBRD foreshadowing ∞-diml. Exact bounds via small tweak in 2020. (D.) and independently (BDHKVZ)
- 2019. k-clique-free Henson graphs: Upper Bounds. (D.)
- 2019. ∞-dimensional RT for Borel sets of Rado graphs. (D.)
- 2020. Binary rel. Forb (\mathcal{F}) : Upper Bounds. (Zucker) 2020. Exact BRD for binary SDAP+ structures. (Coulson, D., Patel)
- 2021. Binary rel. Forb (\mathcal{F}) : Exact BRD. (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker)
- 2022. ∞-dimensional RT structures with SDAP ${ }^{+}$. recovers Exact BRD. (D.)
- 2023+. ∞-dimensional RT for finitely constrained binary FAP. recovers Exact BRD. (D., Zucker)

Developments not using forcing (arxiv dates)

- 2018. Certain homogeneous metric spaces: FBRD. (Mašulović) category th.
- 2019. 3-uniform hypergraphs: FBRD. (Balko, Chodounský, Hubička, Konečný, Vena) Milliken Theorem.
- 2020. Circular directed graphs: Exact BRD Computed. (Dasilva Barbosa) category theory.
- 2020. Homogeneous partial order: FBRD. (Hubička) Ramsey space of parameter words. First non-forcing proof for \mathcal{H}_{3}.
- 2021. Homogenous graphs with forbidden cycles (metric spaces): FBRD. (Balko, Chodounský, Hubička, Konečný, Nešetřil, Vena) param. words.
- 2023. Homogeneous partial order: Exact BRD. (Balko, Chodounský, D., Hubička, Konečný, Vena, Zucker) parameter words.
- 2023. Infinite languages, unrestricted structures: FBRD. (Braunfeld, Chodounský, de Rancourt, Hubička, Kawach, Konečný. Laver Theorem.
- 2023+. Many Forb (\mathcal{F}), all arities, and more: FBRD. (BCDHKNVZ) New methods.
- 2023+. Pseudotrees. (Chodounský, D., Eskew, Weinert)

Abstract Ramsey Theorem (∞-diml Ramsey Theory)

Theorem (Todorcevic)

Suppose we are given a structure $\left(\mathcal{R}, \mathcal{S}, \leq, \leq_{\mathcal{R}}\right)$ with finite restrictions maps satisfying Axioms A. 1 to A.4, and that \mathcal{S} is closed. Then the field of \mathcal{S}-Ramsey subsets of \mathcal{R} is closed under the Souslin operation and it coincides with the field of \mathcal{S}-Baire subsets of \mathcal{R}.

$$
\mathcal{R}=\mathcal{S} \Longrightarrow \text { Abstract Ellentuck Theorem }
$$

So if we could just show that our spaces of subcopies of \mathbf{K} satisfy these four axioms, we'd be done.

Abstract Ramsey Theorem (∞-diml Ramsey Theory)

Theorem (Todorcevic)

Suppose we are given a structure $\left(\mathcal{R}, \mathcal{S}, \leq, \leq_{\mathcal{R}}\right)$ with finite restrictions maps satisfying Axioms A. 1 to A.4, and that \mathcal{S} is closed. Then the field of \mathcal{S}-Ramsey subsets of \mathcal{R} is closed under the Souslin operation and it coincides with the field of \mathcal{S}-Baire subsets of \mathcal{R}.

$$
\mathcal{R}=\mathcal{S} \Longrightarrow \text { Abstract Ellentuck Theorem }
$$

So if we could just show that our spaces of subcopies of \mathbf{K} satisfy these four axioms, we'd be done. BUT

- BRDs preclude working with spaces of ALL subcopies of K.
- A.3(2) generally usually fails for Fraïssé structures.

Big Ramsey Degree Characterizations: Diaries

Big Ramsey degrees of a binary relational homogeneous structure \mathbf{K} are characterized via enumerating the universe of \mathbf{K} and forming the coding tree of 1-types and
I. Diagonal antichains (in the coding tree of 1-types);
II. Passing types;
III. Forbidden substructures also include

I(a). Controlled splitting levels;
II(a). Controlled coding triples;
III(a). Maximal paths;
III(b). Essential age-change levels (incremental changes in how much of a forbidden substructure is coded).

The Point

Any infinite-dimensional structural Ramsey theory must start by fixing a diary and then working with the space of all subcopies of that diary.

Infinite-Dimensional Ramsey Theory for SDAP+ structures

Theorem (D.)

(1) Let \mathbf{K} be a Fraïssé structure satisfying SDAP ${ }^{+}$with finitely many relations of arity at most two. Then for each (good) diary, the space of isomorphic subdiaries satisfies a Galvin-Prikry Theorem.
(0) If \mathbf{K} has a certain amount of rigidity, Axiom A.3(2) of Todorcevic also holds, so we obtain analogues of Ellentuck's Theorem.

Proof Outline:
(1) "Force" a strengthened Pigeonhole Lemma for colorings of copies of a given level set.
(2) Prove that every Nash-Williams family restricts to a front or \emptyset on some member of the space. Uses 'combinatorial forcing'
(3) Use the PL to show that opens sets are CR* and that countable unions of $C R^{*}$ sets are $C R^{*}$.
(4) Complements of $C R^{*}$ sets are $C R^{*}$, hence Borel sets are $C R^{*}$.

Finitely constrained binary relational FAP classes

A structure is irreducible if any two vertices are in some relation: e.g., finite clique, finite tournament, triangle with 2 red edges and one green edge.

Free amalgamation classes are exactly of the form $\operatorname{Forb}(\mathcal{F})$, where \mathcal{F} is a set of finite irreducible structures.

Finitely constrained binary relational FAP classes

k_{3}

A structure is irreducible if any two vertices are in some relation: e.g., finite clique, finite tournament, triangle with 2 red edges and one green edge.

Free amalgamation classes are exactly of the form $\operatorname{Forb}(\mathcal{F})$, where \mathcal{F} is a set of finite irreducible structures.

∞-diml RT for binary finitely constrained FAP classes

Theorem (D., Zucker)

Let \mathbf{K} be a finitely constrained homogeneous structure with free amalgamation and finitely many relations of arity ≤ 2. Then \mathbf{K} has an infinite-dimensional Ramsey theory which directly recovers the exact big Ramsey degrees in (BCDHKVZ 2021).

Proof Outline:
(1) Prove that a weaker version of A. 3 suffices to guarantee the Abstract Ramsey Theorem.
(2) Show that certain two-sorted spaces of diaries satisfy weakened A.3(2).
(3) "Force" a Pigeonhole Lemma for colorings of copies of a given level set.

Coding Tree of 1 -types for \mathcal{H}_{3}

Enumerating the vertices of \mathcal{H}_{3} induces the tree possibilities.

A Strong Diary Δ for \mathcal{H}_{3}

\mathcal{S}-Baire and \mathcal{S}-Ramsey sets

For $X \in \mathcal{S}$ and a finite approximation a to some member of \mathcal{R},

$$
[a, X]=\left\{A \in \mathcal{R}: A \leq_{\mathcal{R}} X \text { and } a \sqsubset A\right\}
$$

A set $\mathcal{X} \subseteq \mathcal{R}$ is \mathcal{S}-Baire if for every non-empty basic open set [a, X] there is an $a \sqsubseteq b \in \mathcal{A R}$ and $Y \leq X$ in \mathcal{S} such that $[b, Y] \neq \emptyset$ and $[b, Y] \subseteq \mathcal{X}$ or $[b, Y] \subseteq \mathcal{X}^{c}$.
\mathcal{S}-Ramsey requires $b=a$ and $Y \in\left[\operatorname{depth}_{X}(a), X\right]$.

Axioms A. 3 and A. 4 for Ramsey Spaces

A. 3 (Amalgamation)
(1) $\forall a \in \mathcal{A R} \forall Y \in \mathcal{S}$,

$$
\left[d=\operatorname{depth}_{Y}(a)<\infty \rightarrow \forall X \in[d, Y]([a, X] \neq \emptyset)\right]
$$

(2) $\forall a \in \mathcal{A R} \forall X, Y \in \mathcal{S}$, letting $d=\operatorname{depth}_{Y}(a)$,

$$
\left[X \leq Y \text { and }[a, X] \neq \emptyset \rightarrow \exists Y^{\prime} \in[d, Y]\left(\left[a, Y^{\prime}\right] \subseteq[a, X]\right)\right]
$$

A. 4 (Pigeonhole) Suppose $a \in \mathcal{A} \mathcal{R}_{k}$ and $\mathcal{O} \subseteq \mathcal{A} \mathcal{R}_{k+1}$. Then for every $Y \in \mathcal{S}$ such that $[a, Y] \neq \emptyset$, there exists $X \in\left[\left.Y\right|_{d}, Y\right]$, where $d=\operatorname{depth}_{Y}(a)$, such that the set $\left\{\left.A\right|_{k+1}: A \in[a, X]\right\}$ is either contained in \mathcal{O} or is disjoint from \mathcal{O}.

A.3(2)-ideals

An ideal $\mathcal{I} \subseteq \mathcal{S} \times \mathcal{S}$ is a set satisfying

- $(X, Y) \in \mathcal{I} \Rightarrow X \leq Y$.
- $(X, Y) \in \mathcal{I}$ and $Z \leq X \Rightarrow(Z, Y) \in \mathcal{I}$.
\mathcal{I} is an A.3(2)-ideal if additionally
- $\forall Y \in \mathcal{S} \forall n<\omega \exists Y^{\prime} \in \mathcal{S}$ with $\left(Y^{\prime}, Y\right) \in \mathcal{I}$ and $\left.Y^{\prime}\right|_{n}=\left.Y\right|_{n}$.
- If $(X, Y) \in \mathcal{I}$ and $a \in \mathcal{A} \mathcal{R}^{\mathcal{X}}$, there is $Y^{\prime} \in \mathcal{S}$ with $Y^{\prime} \in\left[\operatorname{depth}_{\mathrm{Y}}(\mathrm{a}), \mathrm{Y}\right],\left(Y^{\prime}, Y\right) \in \mathcal{I}$, and $\left[a, Y^{\prime}\right] \subseteq[a, X]$.

A.3(2)-ideals

An ideal $\mathcal{I} \subseteq \mathcal{S} \times \mathcal{S}$ is a set satisfying

- $(X, Y) \in \mathcal{I} \Rightarrow X \leq Y$.
- $(X, Y) \in \mathcal{I}$ and $Z \leq X \Rightarrow(Z, Y) \in \mathcal{I}$.
\mathcal{I} is an A.3(2)-ideal if additionally
- $\forall Y \in \mathcal{S} \forall n<\omega \exists Y^{\prime} \in \mathcal{S}$ with $\left(Y^{\prime}, Y\right) \in \mathcal{I}$ and $\left.Y^{\prime}\right|_{n}=\left.Y\right|_{n}$.
- If $(X, Y) \in \mathcal{I}$ and $a \in \mathcal{A} \mathcal{R}^{\boldsymbol{X}}$, there is $Y^{\prime} \in \mathcal{S}$ with $Y^{\prime} \in\left[\operatorname{depth}_{\mathrm{Y}}(\mathrm{a}), \mathrm{Y}\right],\left(Y^{\prime}, Y\right) \in \mathcal{I}$, and $\left[a, Y^{\prime}\right] \subseteq[a, X]$.

A.3(2)-ideals

An ideal $\mathcal{I} \subseteq \mathcal{S} \times \mathcal{S}$ is a set satisfying

- $(X, Y) \in \mathcal{I} \Rightarrow X \leq Y$.
- $(X, Y) \in \mathcal{I}$ and $Z \leq X \Rightarrow(Z, Y) \in \mathcal{I}$.
\mathcal{I} is an A.3(2)-ideal if additionally
- $\forall Y \in \mathcal{S} \forall n<\omega \exists Y^{\prime} \in \mathcal{S}$ with $\left(Y^{\prime}, Y\right) \in \mathcal{I}$ and $\left.Y^{\prime}\right|_{n}=\left.Y\right|_{n}$.
- If $(X, Y) \in \mathcal{I}$ and $a \in \mathcal{A} \mathcal{R}^{\boldsymbol{X}}$, there is $Y^{\prime} \in \mathcal{S}$ with $Y^{\prime} \in\left[\operatorname{depth}_{\mathrm{Y}}(\mathrm{a}), \mathrm{Y}\right],\left(Y^{\prime}, Y\right) \in \mathcal{I}$, and $\left[a, Y^{\prime}\right] \subseteq[a, X]$.

Abstract Ramsey Theorem from weak A.3(2)

Theorem (D., Zucker)

Suppose ($\mathcal{R}, \mathcal{S}, \leq, \leq_{\mathcal{R}}$) satisfies axioms A.1, A.2, A.3(1), and A.4, and suppose there is an $\mathbf{A} 3(2)$-ideal. Then the conclusion of the Abstract Ramsey Theorem holds.

Abstract Ramsey Theorem from weak A.3(2)

Theorem (D., Zucker)

Suppose ($\mathcal{R}, \mathcal{S}, \leq, \leq_{\mathcal{R}}$) satisfies axioms A.1, A.2, A.3(1), and A.4, and suppose there is an A3(2)-ideal. Then the conclusion of the Abstract Ramsey Theorem holds.

Proof follows Chapter 4 of Todorcevic, making the necessary changes.
Uses combinatorial forcing

And now, for something less forced...

Reverse Math and Big Ramsey Degrees

Anglès d'Auriac, Cholak, Dzafarov, Monin, Patey, Milliken's tree theorem and its applications: a computability-theoretic perspective, AMS Memoirs 2023. 136 pp.
$\operatorname{FBRD}\left(\mathcal{H}_{3}\right)=$ "The triangle-free Henson graph has finite BRD."

Theorem (Anglès d'Auriac, Liu, Mignoty, Patey, 2022)

Carlson-Simpson's Lemma is provable in ACA $_{0}^{+}$. Hence, via Hubička's work, $A C A_{0}^{+} \Longrightarrow \operatorname{FBRD}\left(\mathcal{H}_{3}\right)$.
Theorem (Cholak, D., McCoy, 2023+)
$\operatorname{FBRD}\left(\mathcal{H}_{3}\right) \Longrightarrow \mathrm{ACA}_{0}$.

References

D., Borel sets of Rado graphs and Ramsey's Theorem, arxXiv:1904.00266
D., Infinite-dimensional Ramsey theory for homogeneous structures with SDAP $^{+}$, arXiv:2203.00169
D.-Zucker, Infinite-dimensional Ramsey theory for binary free amalgamation classes, arXiv:2303.04246

An expository introduction to BRD:
D., Ramsey theory of homogeneous structures: current trends and open problems, Proceedings of the 2022 ICM, to appear. arXiv:2110.00655

Thank you very much!

