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Tukey reduction on partial orders

A subset X of a poset (P ,P) is cofinal if 8p 2 P 9x 2 X (p P x).

Given posets (P ,P) and (Q,Q), a function f : Q ! P is cofinal if
for every cofinal subset X ✓ Q, its f -image f 00X is cofinal in P .

A function g : P ! Q is unbounded if for every unbounded subset
X ✓ P , g 00X is unbounded in Q.

P is Tukey reducible to Q, P T Q, if there is a cofinal map
f : Q ! P or, equivalently, an unbounded map g : P ! Q.

P ⌘T Q i↵ P T Q and Q T P .

When P and Q are directed posets, then P ⌘T Q i↵ there is a third
directed poset into which they both embed cofinally.

[P]T = {Q : Q ⌘T P} is the cofinal type of P .
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Tukey reduction on ultrafilters

Let  be an infinite regular cardinal.

Given an ultrafilter U on , (U ,◆) is a directed partial order.

X ✓ U is a filter base for U if for each A 2 U there is a B 2 X such
that A ◆ B .

filter base = cofinal subset

A map f : U ! V is cofinal if for each filter base X ✓ U , f 00X is a
filter base for V .

V is Tukey reducible to U , U �T V , i↵ there is a cofinal map from
U to V .
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Cofinal Types

U �T V i↵ there is a map f : U ! V taking each filter base of U to
a filter base of V .

U ⌘T V () U T V and V T U

⌘T is an equivalence relation on the set of ultrafilters on .

[U ]T = the set of ultrafilters V on  such that V ⌘T U .

= the cofinal type or Tukey type of U .
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Topology

Tukey reducibility has its roots in the development of the notion of
convergence in general topology.

Nets = directed partial orders.

Neighborhood bases in �.
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Tukey coarsens Rudin-Keisler

U �RK V i↵ there is an h :  !  such that

h⇤(U) := {A ✓  : h�1(A) 2 U} = V ;

equivalently, {h00(A) : A 2 U} is a filter base for V .

U ⌘RK V i↵ U ⇠= V ,

meaning there is a bijection h :  !  such that h⇤(U) = V .

• U �RK V =) U �T V

• Tukey equivalence coursens RK equivalence.
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Maximum Cofinal Type for Ultrafilters on !

([c]<!,✓) is Tukey-top among directed partial orders of size c.

Theorem. (Isbell 1965, Juhasz 1967) There is an ultrafilter on !
which is Tukey top.

Construction uses an independent family of size c.
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Isbell’s Problem

Fact. An ultrafilter U on ! is not Tukey top i↵

8hAi : i < ci 2 [U ]c 9I 2 [c]!
\

i2I

Ai 2 U

Isbell’s Problem: Are all ultrafilters on ! Tukey top?

Consistently NO. • (Milovich 08) using ⌃.
• (D.-Todorcevic 11) p-points (and hence Ramsey ultrafilters),
stable ordered union ultrafilters, Fubini iterates, basically
generated ultrafilters are all not Tukey top.

• (Blass-D.-Raghavan 15) and (D. 16) certain non-p-points.

Isbell’s Problem Today: Is there a model of ZFC in which all
ultrafilters on ! are Tukey maximum?
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Cofinal types of ultrafilters on !

Lots of work done:

(1) Finding conditions under which Fubini products are cofinally
equivalent to cartesian products (D.-Todorcevic 11);

(2) Canonizations of cofinal maps into continuous or at least finitary
maps which imply cofinal types of certain ultrafilters have
cardinality c (D.-Todorcevic 11), (Raghavan-Todorcevic 12),
(Blass-D.-Raghavan 15), (D. 16), (D.-Mijares-Trujillo 17), (D.
20);

(3) Other conditions guaranteeing an ultrafilter is not of the
maximum cofinal type (Milovich 08), (D.-Todorcevic 11),
(Raghavan-Todorcevic 12), (Blass-D.-Raghavan 15), (D. 16);
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Cofinal types of ultrafilters on !

(4) Embeddings of various partial orders: 2c incomparable selective
ultrafilters, and p-points (D.-Todorcevic 11),
(Raghavan-Todorcevic 12), P(!)/fin (Raghavan-Shelah 17),
long lines (Kuzeljevic-Raghavan 18), (Raghavan-Verner 19);

(5) Finding conditions under which Tukey reduction implies
Rudin-Keisler or even Rudin-Blass reduction
(Raghavan-Todorcevic 12), (D. 20);

(6) Finding the exact structure of the cofinal types, including the
precise structure of the Rudin-Keisler classes inside them, below
Ramsey ultrafilters (Raghavan-Todorcevic 12), below certain
p-points satisfying weak partition relations (D.-Todorcevic 14),
(D.-Todorcevic 15), (D.-Mijares-Trujillo 17), and below
non-p-points forced by P(!k)/fin⌦k (D. 16).
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Ultrafilters on : Galvin and Tukey
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Special Ultrafilters on 

Let U be an ultrafilter over a regular cardinal . U is

1 uniform if for every X 2 U , |X | = .
2 �-complete if U is closed under < � intersections.
3 normal if U is closed under diagonal intersection:

if hAi | i < i ✓ U , then �i<Ai 2 U .

�i<Ai := {⌫ <  | 8i < ⌫ (⌫ 2 Ai)}

4 Ramsey if for any function f : []2 ! 2 there is an X 2 U such
that f � [X ]2 is constant.

5 selective if for every function f :  ! , there is an X 2 U such
that f � X is either constant or one-to-one.

normal =) Ramsey = selective
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Special Ultrafilters on 

A function f :  !  is almost 1-1 (mod U) if there is an A 2 U such
that for every � < , |f �1[�] \ A| < .

U is a

1 p-point if whenever f :  !  is not constant (mod U) then f is
almost 1-1 (mod U).

2 q-point if every function f :  !  which is almost 1-1 (mod U)
is 1-1 (mod U).

normal =) selective = p-point + q-point

• selective () RK-minimal among uniform ultrafilters
() RK equivalent to a normal ultrafilter
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Measurable Cardinals and Ultrafilters

The following are equivalent:
1  is measurable;
2 There is a -complete ultrafilter over ;
3 There is a Ramsey ultrafilter on ;
4 There is a normal ultrafilter on ;
5  is the critical point of some nontrivial elementary embedding

j : V ! M .

U on  is normal if U is closed under diagonal intersection:

if hAi | i < i ✓ U , then �i<Ai := {⌫ <  | 8i < ⌫ (⌫ 2 Ai)} 2 U .
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The Galvin Property and Tukey Non-Top

For U an ultrafilter on  and �  ⌫, Gal(U ,�, ⌫) holds i↵

8hAi : i < ⌫i 2 [U ]⌫ 9I 2 [⌫]�
\

i2I

Ai 2 U

Theorem. (Galvin, 1973) Suppose < = . Then for every normal
filter U on , Gal(U ,,+) holds.

Theorem. (Benhamou-D.) �  , � inaccessible, U a �-complete

ultrafilter over . Then (U ,◆) ⌘T ([2]<�,✓) i↵ ¬Gal(U ,�, 2).

• If  is measurable, then the -complete ultrafilters over  which are
Tukey-top are exactly those for which ¬Gal(U ,, 2) holds.
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The Galvin Property and Tukey Non-Top

A Galvin ultrafilter on  is an ultrafilter satisfying Gal(U ,, 2); that
is,

8hAi : i < 2i 2 [U ]2
 9I 2 [2]

\

i2I

Ai 2 U

Galvin’s Theorem =) normal ultrafilters are Galvin =) not Tukey
top.

What guarantees Galvin ultrafilters?

Normality is not necessary: (Benhamou-Gitik 2022) showed that
p-points are Galvin, and (Benhamou 2022+) showed that p-point
limits of p-points are Galvin. Tukey analysis allows us to strengthen
these results.

Lots of work on (¬) Galvin Property by Benhamou, Garti, Gitik,
Poveda, Shelah.
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Continuous Cofinal Maps

On !, investigations of Tukey types of ultrafilters was opened up by
the theorem (D.-Todorcevic 11) that p-points have continuous cofinal
maps.

For  measurable, we obtain a similar theorem, but the proof has
some interesting di↵erences and we actually obtain something a bit
stronger.

In the following, consider 2 as a generalized Baire space with the
topology generated by basic open sets of the form {x 2 2 : s < x},
where s 2 2<.
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Continuous Cofinal Maps on 2

Theorem. (Benhamou-D.) Let  be measurable, and suppose U is a
p-point on  and V is a uniform ultrafilter on  such that U �T V .

Then for each monotone cofinal map f : U ! V , there is an X 2 U
such that the restriction of f to U � X is continuous and has image
which is cofinal in V .

Natasha Dobrinen Tukey on measurable cardinals Notre Dame 18 / 34
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Continuous Cofinal Maps on 2

More precisely, let ⇡ :  !  be the minimal non-constant function
mod U ([⇡]U = ), and ⇢ be the function ⇢↵ = sup(⇡�1[↵ + 1]) + 1.

Then for any strictly increasing sequence h�↵ | ↵ < i, there is an
X 2 U such that for every ↵ <  and A 2 U � X , f (A) \ �↵ depends
only on A \ ⇢↵.

Moreover, there is a monotone function f̂ : []< ! []< such that
for each A 2 U � X , there are club many ↵ <  such that

f̂ (A \ ⇢↵) = f (A) \ �↵

and in particular
f (A) =

[

↵<

f̂ (A \ ⇢↵)

Then letting g(A) =
S

↵< f̂ (A \ X \ ⇢↵), g : P() ! P() is a
continuous monotone map, g � U : U ! V is a cofinal map, and
g � (U � X ) = f � (U � X ).
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Continuous Cofinal Maps on 2
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Corollary for normal ultrafilters

If U is normal, then we obtain a stronger form of the above theorem.

Corollary. (B.-D.) If U is normal, then we have that ⇢↵ = ↵ + 1 and
thus f (W )\ �↵ = f ((W \↵+1)[ (X \↵+1))\ �↵, for each ↵ < .

⇢↵ = sup(⇡�1[↵ + 1]) + 1.
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P-points have cofinal types of size 2

Corollary. (B.-D.) There are only 2 many ultrafilters which are Tukey
below a p-point. Moreover, every T -chain of p-points has
order-type at most (2)+.

Using the Hajnal free set lemma, we obtain:

Corollary. (B.-D.) If X is a set of more than (2)+-many p-points on
, then there is a subset Z 2 [X ]|X | such that every distinct
U ,V 2 Z are incomparable in the Tukey order.

• In the Kunen-Paris model there are 2(
+)-many normal ultrafilters,

2 = + and 2(
+) can be made arbitrarily large. In particular, there

are 2(2
)-many Tukey-incomparable normal ultrafilters.
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U ,V 2 Z are incomparable in the Tukey order.

• In the Kunen-Paris model there are 2(
+)-many normal ultrafilters,

2 = + and 2(
+) can be made arbitrarily large. In particular, there

are 2(2
)-many Tukey-incomparable normal ultrafilters.
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Continuous cofinal maps for products of p-points

Theorem. (B.-D.) Suppose U1, . . . ,Un are p-points over  > !,
⇡1, . . . , ⇡n are functions such that [⇡i ]Ui = , and V is a uniform
ultrafilter on  such that U1 ⇥ · · ·⇥ Un �T V .

Then for each monotone cofinal map f : U1 ⇥ · · ·⇥ Un ! V and
every sequence h�↵ | ↵ < i, there are sets Xi 2 Ui such that the
restriction of f to U1 ⇥ · · ·⇥ Un � hX1, . . . ,Xni is monotone, cofinal,
and uniformly continuous, i.e. for each ↵ < , f (hB1, . . . ,Bni) \ �↵ is
determined by hB1 \ ⇢1↵, . . . ,Bm \ ⇢n↵i.

This plus the next theorem on products are useful for finding the
cofinal types in certain models.
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Fubini Products

For any ultrafilter U over a set X and a sequence hVx | x 2 X i of
ultrafilters over Y , define the U-sum of the ultrafilters Vx , to be the
filter over X ⇥ Y defined as follows:
X

U

Vx :=
n
A ✓ X⇥Y : {x 2 X | {y 2 Y | hx , yi 2 B} 2 Vx} 2 U

o

If for every x 2 X , Vx = V , we call the ultrafilter U · V :=
P

U V the
Fubini product of U and V .
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Products of Ultrafilters

Theorem. (D.-Todorcevic 11) If U is a rapid p-point on ! and V is
any ultrafilter on !, then U · V ⌘T U ⇥ V .

However, there are non-rapid p-points for which U <T U · U .

Theorem. (B.-D.) Let ! <  be measurable. For every two
-complete ultrafilters U ,V over , U · V ⌘T U ⇥ V .

Moreover, for U1, . . . ,Un any -complete ultrafilters over ,

U1 · . . . · Un ⌘T

nY

i=1

Ui

In particular, if U is a Galvin ultrafilter over a measurable cardinal 
(namely, Gal(U ,, 2)) then for every n, Un is Galvin.
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Basic and basically generated ultrafilters

The notion of basic partial order comes from (Solecki-Todorcevic 04).

On !, (D.-Todorcevic 11) showed that p-point = basic, and that
basic implies not Tukey top. Then they showed that the relevant
properties are preserved under Fubini iteration, and defined the notion
of a basically generated ultrafilter.

A -complete ultrafilter U over  is called basic if for every sequence
hAi | i < i such that limi! Ai = A 2 U there is a subsequence
hAi↵ | ↵ < i such that \↵<Ai↵ 2 U .

(B.-D.) show that p-point on  implies uniformly basic implies basic
implies p-point. This yields a simple proof that p-points are Galvin.
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Basic and basically generated ultrafilters

An ultrafilter U on  is called basically generated if it is uniform,
-complete, and has a -complete filter base B ✓ U with the
property that to each sequence {Ai | i < } ✓ B converging to an
element of B , there corresponds a function f such that for every
f bd g , we have \↵<Ag(↵) 2 U .

Basically generated implies not Tukey top.

Theorem. (B.-D.) Suppose that U and V↵, ↵ < , are basically
generated ultrafilters on . Then W :=

P
U V↵ is basically generated

(with respect to the product topology on ⇥ ).
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Open Problem

Is it consistent that there are ultrafilters over a measurable cardinal
which are not Tukey-top and also not basically generated?

Contrast with ultrafilters on !:

• (D.-Todorcevic 11): stable ordered union ultrafilters are not Tukey
top.

• (Blass-D.-Raghavan 15): the ultrafilter forced by P(!2)/fin⌦2 is not
Tukey top.

• (D. 16): the ultrafilters forced by P(!k)/fin⌦k are all not Tukey
top; moreover, they form an initial segment of the Tukey classes.
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Models with various cofinal type structures

Corollary. Let U be a normal ultrafilter on a measurable cardinal .
In L[U ]:

1 There is no ultrafilter among the -complete ultrafilters over 
which is Tukey-top.

2 The -complete ultrafilters over  form a single Tukey class
which is the union of !-many Rudin Keisler equivalence classes.

(2) follows from the facts that every  complete ultrafilter in L[U ] is
RK equivalent to Un for some n < !; and we showed that Un ⌘T U .

Contrast with !: It is still open whether there is exactly one Tukey
type for ultrafilters over ! in L(R)[U ], the Solovay model extended by
a forced Ramsey ultrafilter U on !.
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Models with various cofinal type structures

U is Mitchell below W , U /W , if U 2 MW ,
where MW is the (transitive collapse of the) ultrapower V /W .

Theorem. (B.-D.)
1 Suppose that U /W are -complete ultrafilters and W is a

p-point. Then ¬(W T U).
2 If U1 / U2 / · · · / Un are normal ultrafilters, then

¬(Un T U1 ⇥ · · ·⇥ Un�1).
3 If o() = ↵ for ↵  !, then there is a Tukey-chain of -complete

ultrafilters of order type ↵.

4 Let L[ ~U ] be the Mitchell model for o() = ! and let
hUn | n < !i be the /-increasing sequence of ultrafilter on .
Then the sequence h[U1 ⇥ · · ·⇥ Un]T | n < !i are strictly
increasing, cofinal and unbounded in the Tukey order. In
particular, there is no maximal Tukey class.
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Models with various cofinal type structures

Propositions. (B.-D.)
1 Assume GCH and that  is a measurable cardinal. Then

Kunen-Paris construction of a model with many distinct normal
ultrafilters provides model of GCH in which there is a
Tukey-chain of normal ultrafilters on  of order type ! + 1.

2 For every k < ! it is consistent that (P(k) \ {;},✓) can be
embedded into the Tukey classes of -complete ultrafilter on .
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Minimality Conjecture

Are normal ultrafilters on a measurable cardinal  Tukey minimal
among -complete ultrafilters?

We conjecture the answer is yes and call this the minimality
conjecture.

(Raghavan-Todorcevic 12): Ramsey ultrafilters on ! are Tukey
minimal.

The issue with  measurable is that there no Pudlák-Rödl analgogue
for barriers on []< because of Sierpiński’s coloring.
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Ultrapower Axiom

Theorem. (Goldberg)
1 Assume UA and that  is a measurable cardinal with

o() < 2(2
). Then every -complete ultrafilter is Rudin-Keisler

equivalent to a finite product of normal ultrafilters.
2 Under UA, the Mitchell order on normal ultrafilters is linear.

Theorem. (B.-D.) Assume UA and the minimality conjecture.
Suppose that  is a measurable cardinal with o() < 2(2

). Then the
Tukey classes of ultrafilters is isomorphic to ([o()]<!,✓).

Contrast with the wide array of consistent Tukey structures of
ultrafilters on !.
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Thank you very much!

[Benhamou-Dobrinen] Cofinal types of ultrafilters over measurable
cardinals, arxiv:2304.07214
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