Cofinal types of ultrafilters on measurable cardinals

Natasha Dobrinen University of Notre Dame

joint work with Tom Benhamou, Rutgers University

Waterloo Logic Seminar October 18, 2023

Supported by NSF grants DMS-2246703 (TB) and 2300896 (ND)

Natasha Dobrinen

A subset X of a poset (P, \leq_P) is cofinal if $\forall p \in P \exists x \in X (p \leq_P x)$.

A subset X of a poset (P, \leq_P) is cofinal if $\forall p \in P \exists x \in X (p \leq_P x)$.

Given posets (P, \leq_P) and (Q, \leq_Q) , a function $f : Q \to P$ is cofinal if for every cofinal subset $X \subseteq Q$, its f-image f''X is cofinal in P.

A function $g : P \to Q$ is unbounded if for every unbounded subset $X \subseteq P$, g''X is unbounded in Q.

P is Tukey reducible to *Q*, $P \leq_T Q$, if there is a cofinal map $f: Q \to P$ or, equivalently, an unbounded map $g: P \to Q$.

A subset X of a poset (P, \leq_P) is cofinal if $\forall p \in P \exists x \in X (p \leq_P x)$.

Given posets (P, \leq_P) and (Q, \leq_Q) , a function $f : Q \to P$ is cofinal if for every cofinal subset $X \subseteq Q$, its f-image f''X is cofinal in P.

A function $g : P \to Q$ is unbounded if for every unbounded subset $X \subseteq P$, g''X is unbounded in Q.

P is Tukey reducible to Q, $P \leq_T Q$, if there is a cofinal map $f: Q \to P$ or, equivalently, an unbounded map $g: P \to Q$.

 $P \equiv_{\mathcal{T}} Q$ iff $P \leq_{\mathcal{T}} Q$ and $Q \leq_{\mathcal{T}} P$.

A subset X of a poset (P, \leq_P) is cofinal if $\forall p \in P \exists x \in X (p \leq_P x)$.

Given posets (P, \leq_P) and (Q, \leq_Q) , a function $f : Q \to P$ is cofinal if for every cofinal subset $X \subseteq Q$, its f-image f''X is cofinal in P.

A function $g : P \to Q$ is unbounded if for every unbounded subset $X \subseteq P$, g''X is unbounded in Q.

P is Tukey reducible to *Q*, $P \leq_T Q$, if there is a cofinal map $f: Q \to P$ or, equivalently, an unbounded map $g: P \to Q$.

$$P \equiv_{\mathcal{T}} Q$$
 iff $P \leq_{\mathcal{T}} Q$ and $Q \leq_{\mathcal{T}} P$.

When P and Q are directed posets, then $P \equiv_T Q$ iff there is a third directed poset into which they both embed cofinally.

$$[P]_{\mathcal{T}} = \{Q : Q \equiv_{\mathcal{T}} P\}$$
 is the cofinal type of P .

Let κ be an infinite regular cardinal.

Given an ultrafilter U on κ , (U, \supseteq) is a directed partial order.

 $X \subseteq U$ is a **filter base** for U if for each $A \in U$ there is a $B \in X$ such that $A \supseteq B$.

filter base = cofinal subset

Let κ be an infinite regular cardinal.

Given an ultrafilter U on κ , (U, \supseteq) is a directed partial order.

 $X \subseteq U$ is a **filter base** for U if for each $A \in U$ there is a $B \in X$ such that $A \supseteq B$.

filter base = cofinal subset

A map $f : U \to V$ is **cofinal** if for each filter base $X \subseteq U$, f''X is a filter base for V.

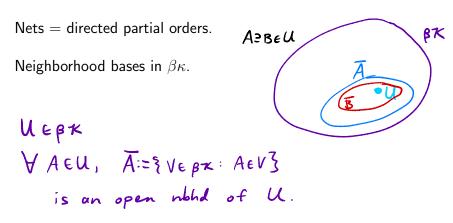
V is **Tukey reducible** to U, $U \ge_{T} V$, iff there is a cofinal map from U to V.

 $U \ge_T V$ iff there is a map $f : U \to V$ taking each filter base of U to a filter base of V.

$$U \equiv_{\mathcal{T}} V \iff U \leq_{\mathcal{T}} V \text{ and } V \leq_{\mathcal{T}} U$$

 $\equiv_{\mathcal{T}}$ is an equivalence relation on the set of ultrafilters on κ .

 $[U]_T$ = the set of ultrafilters V on κ such that $V \equiv_T U$. = the **cofinal type** or **Tukey type** of U. Tukey reducibility has its roots in the development of the notion of convergence in general topology.



 $U \geq_{RK} V$ iff there is an $h: \kappa \to \kappa$ such that

$$h^*(U):=\{A\subseteq\kappa:h^{-1}(A)\in U\}=V;$$

equivalently, $\{h''(A) : A \in U\}$ is a filter base for V.

 $U \geq_{RK} V$ iff there is an $h: \kappa \to \kappa$ such that

$$h^*(U):=\{A\subseteq\kappa:h^{-1}(A)\in U\}=V;$$

equivalently, $\{h''(A) : A \in U\}$ is a filter base for V.

 $U \equiv_{RK} V$ iff $U \cong V$,

meaning there is a bijection $h : \kappa \to \kappa$ such that $h^*(U) = V$.

 $U \geq_{RK} V$ iff there is an $h: \kappa \to \kappa$ such that

$$h^*(U):=\{A\subseteq\kappa:h^{-1}(A)\in U\}=V;$$

equivalently, $\{h''(A) : A \in U\}$ is a filter base for V.

 $U \equiv_{RK} V \text{ iff } U \cong V,$ meaning there is a bijection $h : \kappa \to \kappa$ such that $h^*(U) = V.$

- $U \geq_{RK} V \Longrightarrow U \geq_T V$
- Tukey equivalence coursens RK equivalence.

$([\mathfrak{c}]^{<\omega},\subseteq)$ is Tukey-top among directed partial orders of size \mathfrak{c} .

 $([\mathfrak{c}]^{<\omega},\subseteq)$ is Tukey-top among directed partial orders of size \mathfrak{c} .

Theorem. (Isbell 1965, Juhasz 1967) There is an ultrafilter on ω which is Tukey top.

Construction uses an independent family of size $\mathfrak{c}.$

$$\forall \langle A_i : i < \mathfrak{c} \rangle \in [U]^{\mathfrak{c}} \ \exists I \in [\mathfrak{c}]^{\omega} \ \bigcap_{i \in I} A_i \in U$$

$$\forall \langle A_i : i < \mathfrak{c} \rangle \in [U]^{\mathfrak{c}} \ \exists I \in [\mathfrak{c}]^{\omega} \ \bigcap_{i \in I} A_i \in U$$

Isbell's Problem: Are all ultrafilters on ω Tukey top?

$$\forall \langle A_i : i < \mathfrak{c} \rangle \in [U]^{\mathfrak{c}} \ \exists I \in [\mathfrak{c}]^{\omega} \ \bigcap_{i \in I} A_i \in U$$

Isbell's Problem: Are all ultrafilters on ω Tukey top?

Consistently NO.

$$\forall \langle A_i : i < \mathfrak{c} \rangle \in [U]^{\mathfrak{c}} \; \exists I \in [\mathfrak{c}]^{\omega} \; \bigcap_{i \in I} A_i \in U$$

Isbell's Problem: Are all ultrafilters on ω Tukey top?

Consistently NO. • (Milovich 08) using \Diamond .

- (D.-Todorcevic 11) p-points (and hence Ramsey ultrafilters), stable ordered union ultrafilters, Fubini iterates, basically generated ultrafilters are all not Tukey top.
- (Blass-D.-Raghavan 15) and (D. 16) certain non-p-points.

$$\forall \langle A_i : i < \mathfrak{c} \rangle \in [U]^{\mathfrak{c}} \; \exists I \in [\mathfrak{c}]^{\omega} \; \bigcap_{i \in I} A_i \in U$$

Isbell's Problem: Are all ultrafilters on ω Tukey top?

Consistently NO. • (Milovich 08) using \Diamond .

- (D.-Todorcevic 11) p-points (and hence Ramsey ultrafilters), stable ordered union ultrafilters, Fubini iterates, basically generated ultrafilters are all not Tukey top.
- (Blass-D.-Raghavan 15) and (D. 16) certain non-p-points.

Isbell's Problem Today: Is there a model of ZFC in which all ultrafilters on ω are Tukey maximum?

Lots of work done:

(1) Finding conditions under which Fubini products are cofinally equivalent to cartesian products (D.-Todorcevic 11);

Lots of work done:

- (1) Finding conditions under which Fubini products are cofinally equivalent to cartesian products (D.-Todorcevic 11);
- (2) Canonizations of cofinal maps into continuous or at least finitary maps which imply cofinal types of certain ultrafilters have cardinality c (D.-Todorcevic 11), (Raghavan-Todorcevic 12), (Blass-D.-Raghavan 15), (D. 16), (D.-Mijares-Trujillo 17), (D. 20);

Lots of work done:

- (1) Finding conditions under which Fubini products are cofinally equivalent to cartesian products (D.-Todorcevic 11);
- (2) Canonizations of cofinal maps into continuous or at least finitary maps which imply cofinal types of certain ultrafilters have cardinality c (D.-Todorcevic 11), (Raghavan-Todorcevic 12), (Blass-D.-Raghavan 15), (D. 16), (D.-Mijares-Trujillo 17), (D. 20);
- (3) Other conditions guaranteeing an ultrafilter is not of the maximum cofinal type (Milovich 08), (D.-Todorcevic 11), (Raghavan-Todorcevic 12), (Blass-D.-Raghavan 15), (D. 16);

Cofinal types of ultrafilters on $\boldsymbol{\omega}$

(4) Embeddings of various partial orders: 2^c incomparable selective ultrafilters, and p-points (D.-Todorcevic 11), (Raghavan-Todorcevic 12), P(ω)/fin (Raghavan-Shelah 17), long lines (Kuzeljevic-Raghavan 18), (Raghavan-Verner 19);

Cofinal types of ultrafilters on $\boldsymbol{\omega}$

- (4) Embeddings of various partial orders: 2^c incomparable selective ultrafilters, and p-points (D.-Todorcevic 11), (Raghavan-Todorcevic 12), P(ω)/fin (Raghavan-Shelah 17), long lines (Kuzeljevic-Raghavan 18), (Raghavan-Verner 19);
- (5) Finding conditions under which Tukey reduction implies Rudin-Keisler or even Rudin-Blass reduction (Raghavan-Todorcevic 12), (D. 20);

Cofinal types of ultrafilters on $\boldsymbol{\omega}$

- (4) Embeddings of various partial orders: 2^c incomparable selective ultrafilters, and p-points (D.-Todorcevic 11), (Raghavan-Todorcevic 12), P(ω)/fin (Raghavan-Shelah 17), long lines (Kuzeljevic-Raghavan 18), (Raghavan-Verner 19);
- (5) Finding conditions under which Tukey reduction implies Rudin-Keisler or even Rudin-Blass reduction (Raghavan-Todorcevic 12), (D. 20);
- (6) Finding the exact structure of the cofinal types, including the precise structure of the Rudin-Keisler classes inside them, below Ramsey ultrafilters (Raghavan-Todorcevic 12), below certain p-points satisfying weak partition relations (D.-Todorcevic 14), (D.-Todorcevic 15), (D.-Mijares-Trujillo 17), and below non-p-points forced by P(ω^k)/fin^{⊗k} (D. 16).

Ultrafilters on κ : Galvin and Tukey

Special Ultrafilters on κ

Let U be an ultrafilter over a regular cardinal κ . U is

- uniform if for every $X \in U$, $|X| = \kappa$.
- **2** λ -complete if *U* is closed under $< \lambda$ intersections.
- normal if U is closed under diagonal intersection: if $\langle A_i | i < \kappa \rangle \subseteq U$, then $\Delta_{i < \kappa} A_i \in U$.

$$\Delta_{i<\kappa}A_i := \{\nu < \kappa \mid \forall i < \nu \, (\nu \in A_i)\}$$

- **Q** Ramsey if for any function $f : [\kappa]^2 \to 2$ there is an $X \in U$ such that $f \upharpoonright [X]^2$ is constant.
- Selective if for every function f : κ → κ, there is an X ∈ U such that f ↾ X is either constant or one-to-one.

normal
$$\implies$$
 Ramsey = selective

Special Ultrafilters on κ

A function $f : \kappa \to \kappa$ is almost 1-1 (mod U) if there is an $A \in U$ such that for every $\gamma < \kappa$, $|f^{-1}[\gamma] \cap A| < \kappa$.

U is a

- *p*-point if whenever $f : \kappa \to \kappa$ is not constant (mod *U*) then *f* is almost 1-1 (mod *U*).
- *q*-point if every function *f* : *κ* → *κ* which is almost 1-1 (mod U) is 1-1 (mod U).

normal \implies selective = p-point + q-point

The following are equivalent:

- κ is measurable;
- **2** There is a κ -complete ultrafilter over κ ;
- Solution There is a Ramsey ultrafilter on κ ;
- There is a normal ultrafilter on κ ;
- *κ* is the critical point of some nontrivial elementary embedding
 j : *V* → *M*.

U on κ is normal if U is closed under diagonal intersection:

 $\text{if } \langle \mathsf{A}_i \mid i < \kappa \rangle \subseteq \textit{U} \text{, then } \Delta_{i < \kappa} \mathsf{A}_i := \{\nu < \kappa \mid \forall i < \nu \, (\nu \in \mathsf{A}_i)\} \in \textit{U}.$

The Galvin Property and Tukey Non-Top

For U an ultrafilter on κ and $\lambda \leq \nu$, $Gal(U, \lambda, \nu)$ holds iff

$$\forall \langle A_i : i < \nu \rangle \in [U]^{\nu} \; \exists I \in [\nu]^{\lambda} \; \bigcap_{i \in I} A_i \in U$$

The Galvin Property and Tukey Non-Top

For U an ultrafilter on κ and $\lambda \leq \nu$, $Gal(U, \lambda, \nu)$ holds iff

$$\forall \langle A_i : i < \nu \rangle \in [U]^{\nu} \; \exists I \in [\nu]^{\lambda} \; \bigcap_{i \in I} A_i \in U$$

Theorem. (Galvin, 1973) Suppose $\kappa^{<\kappa} = \kappa$. Then for every normal filter U on κ , Gal (U, κ, κ^+) holds.

For U an ultrafilter on κ and $\lambda \leq \nu$, $Gal(U, \lambda, \nu)$ holds iff

$$\forall \langle A_i : i < \nu \rangle \in [U]^{\nu} \; \exists I \in [\nu]^{\lambda} \; \bigcap_{i \in I} A_i \in U$$

Theorem. (Galvin, 1973) Suppose $\kappa^{<\kappa} = \kappa$. Then for every normal filter U on κ , Gal (U, κ, κ^+) holds.

Theorem. (Benhamou-D.) $\lambda \leq \kappa$, λ inaccessible, U a λ -complete ultrafilter over κ . Then $(U, \supseteq) \equiv_{\mathcal{T}} ([2^{\kappa}]^{<\lambda}, \subseteq)$ iff $\neg \operatorname{Gal}(U, \lambda, 2^{\kappa})$.

 If κ is measurable, then the κ-complete ultrafilters over κ which are Tukey-top are exactly those for which ¬Gal(U, κ, 2^κ) holds.

The Galvin Property and Tukey Non-Top

A Galvin ultrafilter on κ is an ultrafilter satisfying Gal $(U, \kappa, 2^{\kappa})$; that is,

$$\forall \langle A_i : i < 2^{\kappa} \rangle \in [U]^{2^{\kappa}} \quad \exists I \in [2^{\kappa}]^{\kappa} \quad \bigcap_{i \in I} A_i \in U$$

Galvin's Theorem \implies normal ultrafilters are Galvin \implies not Tukey top.

The Galvin Property and Tukey Non-Top

A Galvin ultrafilter on κ is an ultrafilter satisfying Gal $(U, \kappa, 2^{\kappa})$; that is,

$$\forall \langle A_i : i < 2^{\kappa} \rangle \in [U]^{2^{\kappa}} \quad \exists I \in [2^{\kappa}]^{\kappa} \quad \bigcap_{i \in I} A_i \in U$$

Galvin's Theorem \implies normal ultrafilters are Galvin \implies not Tukey top.

What guarantees Galvin ultrafilters?

Normality is not necessary: (Benhamou-Gitik 2022) showed that p-points are Galvin, and (Benhamou 2022+) showed that p-point limits of p-points are Galvin. Tukey analysis allows us to strengthen these results.

Lots of work on (\neg) Galvin Property by Benhamou, Garti, Gitik, Poveda, Shelah.

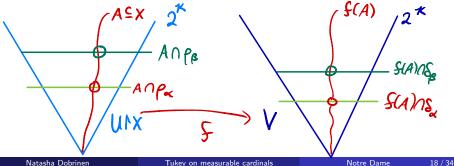
On ω , investigations of Tukey types of ultrafilters was opened up by the theorem (D.-Todorcevic 11) that p-points have continuous cofinal maps.

For κ measurable, we obtain a similar theorem, but the proof has some interesting differences and we actually obtain something a bit stronger.

In the following, consider 2^{κ} as a generalized Baire space with the topology generated by basic open sets of the form $\{x \in 2^{\kappa} : s \sqsubset x\}$, where $s \in 2^{<\kappa}$.

Theorem. (Benhamou-D.) Let κ be measurable, and suppose U is a p-point on κ and V is a uniform ultrafilter on κ such that $U \geq_{\mathcal{T}} V$.

Then for each monotone cofinal map $f : U \to V$, there is an $X \in U$ such that the restriction of f to $U \upharpoonright X$ is continuous and has image which is cofinal in V.



Continuous Cofinal Maps on 2^{κ}

More precisely, let $\pi : \kappa \to \kappa$ be the minimal non-constant function mod $U([\pi]_U = \kappa)$, and ρ be the function $\rho_{\alpha} = \sup(\pi^{-1}[\alpha + 1]) + 1$.

Then for any strictly increasing sequence $\langle \delta_{\alpha} \mid \alpha < \kappa \rangle$, there is an $X \in U$ such that for every $\alpha < \kappa$ and $A \in U \upharpoonright X$, $f(A) \cap \delta_{\alpha}$ depends only on $A \cap \rho_{\alpha}$.

Moreover, there is a monotone function $\hat{f} : [\kappa]^{<\kappa} \to [\kappa]^{<\kappa}$ such that for each $A \in U \upharpoonright X$, there are club many $\alpha < \kappa$ such that

$$\widehat{f}(A \cap \rho_{\alpha}) = f(A) \cap \delta_{\alpha}$$

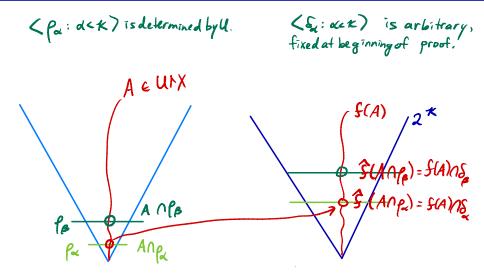
and in particular

$$f(A) = \bigcup_{\alpha < \kappa} \hat{f}(A \cap \rho_{\alpha})$$

Then letting $g(A) = \bigcup_{\alpha < \kappa} \hat{f}(A \cap X \cap \rho_{\alpha})$, $g : \mathcal{P}(\kappa) \to \mathcal{P}(\kappa)$ is a continuous monotone map, $g \upharpoonright U : U \to V$ is a cofinal map, and $g \upharpoonright (U \upharpoonright X) = f \upharpoonright (U \upharpoonright X)$.

Natasha Dobrinen

Continuous Cofinal Maps on 2^{κ}



If U is normal, then we obtain a stronger form of the above theorem.

Corollary. (B.-D.) If U is normal, then we have that $\rho_{\alpha} = \alpha + 1$ and thus $f(W) \cap \delta_{\alpha} = f((W \cap \alpha + 1) \cup (X \setminus \alpha + 1)) \cap \delta_{\alpha}$, for each $\alpha < \kappa$.

 $\rho_{\alpha} = \sup(\pi^{-1}[\alpha + 1]) + 1.$

Corollary. (B.-D.) There are only 2^{κ} many ultrafilters which are Tukey below a *p*-point. Moreover, every \leq_T -chain of *p*-points has order-type at most $(2^{\kappa})^+$.

Corollary. (B.-D.) There are only 2^{κ} many ultrafilters which are Tukey below a *p*-point. Moreover, every \leq_{T} -chain of *p*-points has order-type at most $(2^{\kappa})^{+}$.

Using the Hajnal free set lemma, we obtain:

Corollary. (B.-D.) If \mathcal{X} is a set of more than $(2^{\kappa})^+$ -many *p*-points on κ , then there is a subset $\mathcal{Z} \in [\mathcal{X}]^{|\mathcal{X}|}$ such that every distinct $U, V \in Z$ are incomparable in the Tukey order.

Corollary. (B.-D.) There are only 2^{κ} many ultrafilters which are Tukey below a *p*-point. Moreover, every \leq_{T} -chain of *p*-points has order-type at most $(2^{\kappa})^{+}$.

Using the Hajnal free set lemma, we obtain:

Corollary. (B.-D.) If \mathcal{X} is a set of more than $(2^{\kappa})^+$ -many *p*-points on κ , then there is a subset $\mathcal{Z} \in [\mathcal{X}]^{|\mathcal{X}|}$ such that every distinct $U, V \in Z$ are incomparable in the Tukey order.

• In the Kunen-Paris model there are $2^{(\kappa^+)}$ -many normal ultrafilters, $2^{\kappa} = \kappa^+$ and $2^{(\kappa^+)}$ can be made arbitrarily large. In particular, there are $2^{(2^{\kappa})}$ -many Tukey-incomparable normal ultrafilters.

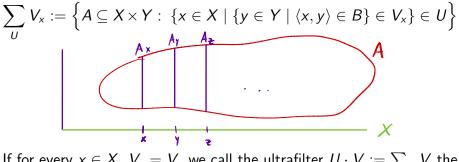
Theorem. (B.-D.) Suppose U_1, \ldots, U_n are *p*-points over $\kappa > \omega$, π_1, \ldots, π_n are functions such that $[\pi_i]_{U_i} = \kappa$, and *V* is a uniform ultrafilter on κ such that $U_1 \times \cdots \times U_n \ge_T V$.

Then for each monotone cofinal map $f: U_1 \times \cdots \times U_n \to V$ and every sequence $\langle \delta_{\alpha} \mid \alpha < \kappa \rangle$, there are sets $X_i \in U_i$ such that the restriction of f to $U_1 \times \cdots \times U_n \upharpoonright \langle X_1, \ldots, X_n \rangle$ is monotone, cofinal, and uniformly continuous, i.e. for each $\alpha < \kappa$, $f(\langle B_1, \ldots, B_n \rangle) \cap \delta_{\alpha}$ is determined by $\langle B_1 \cap \rho_{\alpha}^1, \ldots, B_m \cap \rho_{\alpha}^n \rangle$.

This plus the next theorem on products are useful for finding the cofinal types in certain models.

Fubini Products

For any ultrafilter U over a set X and a sequence $\langle V_x | x \in X \rangle$ of ultrafilters over Y, define the *U*-sum of the ultrafilters V_x , to be the filter over $X \times Y$ defined as follows:



If for every $x \in X$, $V_x = V$, we call the ultrafilter $U \cdot V := \sum_U V$ the Fubini product of U and V.

Theorem. (D.-Todorcevic 11) If U is a rapid p-point on ω and V is any ultrafilter on ω , then $U \cdot V \equiv_{\mathcal{T}} U \times V$.

However, there are non-rapid p-points for which $U <_T U \cdot U$.

Theorem. (D.-Todorcevic 11) If U is a rapid p-point on ω and V is any ultrafilter on ω , then $U \cdot V \equiv_T U \times V$.

However, there are non-rapid p-points for which $U <_T U \cdot U$.

Theorem. (B.-D.) Let $\omega < \kappa$ be measurable. For every two κ -complete ultrafilters U, V over $\kappa, U \cdot V \equiv_T U \times V$.

Moreover, for U_1,\ldots,U_n any κ -complete ultrafilters over κ ,

$$U_1\cdot\ldots\cdot U_n\equiv_T\prod_{i=1}^n U_i$$

In particular, if U is a Galvin ultrafilter over a measurable cardinal κ (namely, Gal $(U, \kappa, 2^{\kappa})$) then for every n, U^n is Galvin.

The notion of basic partial order comes from (Solecki-Todorcevic 04).

On ω , (D.-Todorcevic 11) showed that p-point = basic, and that basic implies not Tukey top. Then they showed that the relevant properties are preserved under Fubini iteration, and defined the notion of a basically generated ultrafilter.

The notion of basic partial order comes from (Solecki-Todorcevic 04).

On ω , (D.-Todorcevic 11) showed that p-point = basic, and that basic implies not Tukey top. Then they showed that the relevant properties are preserved under Fubini iteration, and defined the notion of a basically generated ultrafilter.

A κ -complete ultrafilter U over κ is called basic if for every sequence $\langle A_i \mid i < \kappa \rangle$ such that $\lim_{i \to \kappa} A_i = A \in U$ there is a subsequence $\langle A_{i_{\alpha}} \mid \alpha < \kappa \rangle$ such that $\bigcap_{\alpha < \kappa} A_{i_{\alpha}} \in U$.

(B.-D.) show that p-point on κ implies uniformly basic implies basic implies p-point. This yields a simple proof that p-points are Galvin.

An ultrafilter U on κ is called basically generated if it is uniform, κ -complete, and has a κ -complete filter base $B \subseteq U$ with the property that to each sequence $\{A_i \mid i < \kappa\} \subseteq B$ converging to an element of B, there corresponds a function f such that for every $f \leq_{bd} g$, we have $\cap_{\alpha < \kappa} A_{g(\alpha)} \in U$.

Basically generated implies not Tukey top.

An ultrafilter U on κ is called basically generated if it is uniform, κ -complete, and has a κ -complete filter base $B \subseteq U$ with the property that to each sequence $\{A_i \mid i < \kappa\} \subseteq B$ converging to an element of B, there corresponds a function f such that for every $f \leq_{bd} g$, we have $\cap_{\alpha < \kappa} A_{g(\alpha)} \in U$.

Basically generated implies not Tukey top.

Theorem. (B.-D.) Suppose that U and V_{α} , $\alpha < \kappa$, are basically generated ultrafilters on κ . Then $W := \sum_{U} V_{\alpha}$ is basically generated (with respect to the product topology on $\kappa \times \kappa$).

Is it consistent that there are ultrafilters over a measurable cardinal which are not Tukey-top and also not basically generated?

Is it consistent that there are ultrafilters over a measurable cardinal which are not Tukey-top and also not basically generated?

Contrast with ultrafilters on ω :

- (D.-Todorcevic 11): stable ordered union ultrafilters are not Tukey top.
- (Blass-D.-Raghavan 15): the ultrafilter forced by $P(\omega^2)/\text{fin}^{\otimes 2}$ is not Tukey top.
- (D. 16): the ultrafilters forced by P(ω^k)/fin^{⊗k} are all not Tukey top; moreover, they form an initial segment of the Tukey classes.

Corollary. Let U be a normal ultrafilter on a measurable cardinal κ . In L[U]:

- There is no ultrafilter among the κ-complete ultrafilters over κ which is Tukey-top.
- One κ-complete ultrafilters over κ form a single Tukey class which is the union of ω-many Rudin Keisler equivalence classes.

(2) follows from the facts that every κ complete ultrafilter in L[U] is RK equivalent to U^n for some $n < \omega$; and we showed that $U^n \equiv_T U$.

Corollary. Let U be a normal ultrafilter on a measurable cardinal κ . In L[U]:

- There is no ultrafilter among the κ-complete ultrafilters over κ which is Tukey-top.
- One κ-complete ultrafilters over κ form a single Tukey class which is the union of ω-many Rudin Keisler equivalence classes.

(2) follows from the facts that every κ complete ultrafilter in L[U] is RK equivalent to U^n for some $n < \omega$; and we showed that $U^n \equiv_T U$.

Contrast with ω : It is still open whether there is exactly one Tukey type for ultrafilters over ω in $L(\mathbb{R})[U]$, the Solovay model extended by a forced Ramsey ultrafilter U on ω .

Models with various cofinal type structures

U is Mitchell below *W*, $U \triangleleft W$, if $U \in M_W$, where M_W is the (transitive collapse of the) ultrapower V^{κ}/W .

Models with various cofinal type structures

U is Mitchell below *W*, $U \triangleleft W$, if $U \in M_W$, where M_W is the (transitive collapse of the) ultrapower V^{κ}/W .

Theorem. (B.-D.)

- Suppose that U ⊲ W are κ-complete ultrafilters and W is a p-point. Then ¬(W ≤_T U).
- If $U_1 \triangleleft U_2 \triangleleft \cdots \triangleleft U_n$ are normal ultrafilters, then $\neg (U_n \leq_T U_1 \times \cdots \times U_{n-1}).$
- If o(κ) = α for α ≤ ω, then there is a Tukey-chain of κ-complete ultrafilters of order type α.
- Let L[U] be the Mitchell model for o(κ) = ω and let (U_n | n < ω) be the ⊲-increasing sequence of ultrafilter on κ. Then the sequence ([U₁ × ··· × U_n]_T | n < ω) are strictly increasing, cofinal and unbounded in the Tukey order. In particular, there is no maximal Tukey class.

Propositions. (B.-D.)

- Assume GCH and that κ is a measurable cardinal. Then Kunen-Paris construction of a model with many distinct normal ultrafilters provides model of GCH in which there is a Tukey-chain of normal ultrafilters on κ of order type ω + 1.
- Sor every k < ω it is consistent that (P(k) \ {∅}, ⊆) can be embedded into the Tukey classes of κ-complete ultrafilter on κ.</p>

Are normal ultrafilters on a measurable cardinal κ Tukey minimal among κ -complete ultrafilters?

Are normal ultrafilters on a measurable cardinal κ Tukey minimal among κ -complete ultrafilters?

We conjecture the answer is yes and call this the minimality conjecture.

Are normal ultrafilters on a measurable cardinal κ Tukey minimal among κ -complete ultrafilters?

We conjecture the answer is yes and call this the minimality conjecture.

(Raghavan-Todorcevic 12): Ramsey ultrafilters on ω are Tukey minimal.

The issue with κ measurable is that there no Pudlák-Rödl analgogue for barriers on $[\kappa]^{<\kappa}$ because of Sierpiński's coloring.

Theorem. (Goldberg)

- Assume UA and that κ is a measurable cardinal with *o*(κ) < 2^(2^κ). Then every κ-complete ultrafilter is Rudin-Keisler equivalent to a finite product of normal ultrafilters.
- **2** Under UA, the Mitchell order on normal ultrafilters is linear.

Theorem. (Goldberg)

- Assume UA and that κ is a measurable cardinal with *o*(κ) < 2^(2^κ). Then every κ-complete ultrafilter is Rudin-Keisler equivalent to a finite product of normal ultrafilters.
- **2** Under UA, the Mitchell order on normal ultrafilters is linear.

Theorem. (B.-D.) Assume UA and the minimality conjecture. Suppose that κ is a measurable cardinal with $o(\kappa) < 2^{(2^{\kappa})}$. Then the Tukey classes of ultrafilters is isomorphic to $([o(\kappa)]^{<\omega}, \subseteq)$.

Theorem. (Goldberg)

- Assume UA and that κ is a measurable cardinal with *o*(κ) < 2^(2^κ). Then every κ-complete ultrafilter is Rudin-Keisler equivalent to a finite product of normal ultrafilters.
- **2** Under UA, the Mitchell order on normal ultrafilters is linear.

Theorem. (B.-D.) Assume UA and the minimality conjecture. Suppose that κ is a measurable cardinal with $o(\kappa) < 2^{(2^{\kappa})}$. Then the Tukey classes of ultrafilters is isomorphic to $([o(\kappa)]^{<\omega}, \subseteq)$.

Contrast with the wide array of consistent Tukey structures of ultrafilters on $\boldsymbol{\omega}.$

Thank you very much!

Thank you very much!

[Benhamou-Dobrinen] *Cofinal types of ultrafilters over measurable cardinals*, arxiv:2304.07214