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Day 3: Infinite-dimensional Ramsey theory

[. Infinite-dimensional Ramsey Theory on w.

(a) Proofs using combinatorial forcing.

Il. Topological Ramsey Spaces.
(a) Definitions.
(b) The Four Axioms and Abstract Ellentuck Theorem.

(c) Examples.

[I1. Infinite-dimensional Structural Ramsey Theory.

(a) Extending big Ramsey degree results.
(b) Using forcing to prove Pigeonholes (Axiom A.4).

[V. More Directions and Open Problems.

V. References.
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I. Infinite-dimensional Ramsey Theory on w.
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Ramsey subsets of the Baire space

A subset X of [w]“ is Ramsey if each for M € [w]“, there is an
N € [M]“ such that [N]* C X or [N]*N X = 0.

Ramsey's Theorem (topological form). For any m and r, if X C [w]

is a union of basic clopen sets of the form [s,w] where s € [w]™, then
X is Ramsey.
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Infinite-dimensional Ramsey Theory

A subset X of [w]“ is Ramsey if each for M € [w]¥, there is an
N € [M]“ such that [N]* C X or [N]*N X = 0.
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Infinite-dimensional Ramsey Theory

A subset X of [w]“ is Ramsey if each for M € [w]¥, there is an
N € [M]“ such that [N]* C X or [N]*N X = 0.

AC = JX C [w]” which is not Ramsey.

Solution: restrict to ‘definable’ sets.
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Infinite-dimensional Ramsey Theory

A subset X of [w]“ is Ramsey if each for M € [w]¥, there is an
N € [M]“ such that [N]* C X or [N]*N X = 0.

Nash-Williams Thm. Clopen sets are Ramsey.

Galvin—Prikry Thm. Borel sets are Ramsey.

Silver Thm. Analytic sets are Ramsey.

Ellentuck Thm. A set is completely Ramsey iff it has the property
of Baire in the Ellentuck topology.
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Ellentuck Theorem

Ellentuck topology: refines the metric topology with basic open sets
[s,A]={B € [w]*:sC B C A}
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Ellentuck Theorem

Ellentuck topology: refines the metric topology with basic open sets
[s,A]={B € [w]*:sC B C A}

Theorem (Ellentuck)

A set X C [w]” satisfies
()  V[s,A] 3B € [s,A] such that[s,B] C X or[s,B]NX =10
iff X has the property of Baire with respect to the Ellentuck topology.
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Ellentuck topology: refines the metric topology with basic open sets
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Theorem (Ellentuck)

A set X C [w]” satisfies
()  V[s,A] 3B € [s,A] such that[s,B] C X or[s,B]NX =10
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() is called completely Ramsey by Galvin—Prikry and Ramsey by Todorcevic.

The Ellentuck space is the prototype for topological Ramsey
spaces:
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Ellentuck Theorem

Ellentuck topology: refines the metric topology with basic open sets
[s,A]={B € [w]*:sC B C A}

Theorem (Ellentuck)

A set X C [w]” satisfies
()  V[s,A] 3B € [s,A] such that[s,B] C X or[s,B]NX =10
iff X has the property of Baire with respect to the Ellentuck topology.

() is called completely Ramsey by Galvin—Prikry and Ramsey by Todorcevic.

The Ellentuck space is the prototype for topological Ramsey
spaces: Points are infinite sequences, topology is induced by finite
heads and infinite tails, and every subset with the property of Baire
satisfies ().
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Nash-Williams Theorem

Definition

A family F C [w]<“ is Nash-Williams iff s  t in F implies s [£ t.

Definition

F C [w]=¥ is Ramsey iff for each partition F = Fy U Fi, there is an
M € [w]* such that F;|M = 0.

Theorem (Nash-Williams)

Every Nash-Williams family is Ramsey.
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Nash-Williams Theorem

Proof developed " combinatorial -Cvrcma,",
Theorem (Nash-Williams)

Every Nash-Williams family is Ramsey.

Examp[cf Schreter Barrier
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Galvin-Prikry Theorem

Theorem (Galvin-Prikry)

Every Borel set X C [w]” satisfies
V[s,A] 3B € [s, A] such that [s,B] C X or[s,B]NX = @.é\

Proo-[: wses com bina Jovrial Pvrcmg +o show
Hrat “vat/ open et s Ramsey.

Def: X clwl?«s Co»«p/d—cly KMLSQ)/ (CR)«¢
Huis line holds.

Tl'\t rest of %Ffamc l'wts Hu -po[louﬁn;,
outline:
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Galvin-Prikry Theorem

I. EverY opin set s CK.
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Ellentuck Theorem

Theorem (Ellentuck)

A set X C [w]” satisfies
V[s, Al 3B € [s, A] such that [s,B] C X or [s,B]NX =0
iff X has the property of Baire with respect to the Ellentuck topology.

A set P)C l'\.as% Prafz.erfy of Baire
= X = OCAM

Note : S=¢ g (ves wﬁ(w)“’ . lHolds in LUK), and
Under AD({, AD++V= L((?(IR\)
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Ellentuck Theorem

Ellentucks Praa-c o‘osely Follows Galvin- P/ﬁkr/, W an
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in Todorcevic's book .
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Ellentuck Theorem
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Ellentuck Theorem
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Ellentuck Theorem
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Ellentuck Theorem
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Ellentuck Theorem
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Ellentuck Theorem
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[I. Topological Ramsey Spaces
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ll(a). Topological Ramsey Spaces

History:
Carlson and Carlson-Simpson 1980's and 1990's.

Todorcevic Book 2010.
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ll(a). Topological Ramsey Spaces

(R, <,r)

[a,B]={A€R:aC BANA< B}

Definition
A triple (R, <, r) is a topological Ramsey space if every subset
with the property of Baire is Ramsey and every meager subset is

Ramsey null.

Natasha Dobrinen Infinite Structural Ramsey Theory Notre Dame 20/52



lI(b). Axioms guaranteeing TRS's
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Todorcevic's Axioms for Topological Ramsey Spaces

(R, <,r). AR ={r,(A): A€ RAn<m}

A.1 (Sequencing)
(1) n(A)=0forall Ac R,
(2) B # Aimplies that r,(A) # r,(B) for some n,
(3) rm(A) = ry(B) implies m = n and rc(A) = re(B) for all k < m.

A.2 (Finitization) There is a transitive, reflexive relation <g, on AR
such that

(1) {a € AR : a <g, b} is finite for all b € R,
(2) A< B iff Vm 3n such that ry,(A) <gn ra(B),
(3) Va,be AR [aC band b <g, ¢ — Id C c a <z, d|].
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Todorcevic's Axioms for Topological Ramsey Spaces

A.3 (Amalgamation)
(1) Yae ARVB € R,

d = depthg(a) < co — VA€ [d, B] ([a, A] # 0),
(2) Yae AR VA, B € R, letting d = depthg(a),

A<Band[a,Al£0 — 3Ce[d,B] ([aC] C [a,A).

A.4 (Pigeonhole) Suppose a € ARy and O C ARy 1. Then for
every B € R such that [a, B] # (), there exists A € [rk(B), B],
where d = depthg(a), such that the set {r.1(C): C € [a,A]} is
either contained in O or is disjoint from O.
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ll(c). Examples of Topological Ramsey Spaces

Ellentuck space
e Milliken strong trees

o FINEI

Many more.
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ll(c). Milliken strong trees (1981)
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lI(c). Milliken’s block sequence space FINI>®! (1975)
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For more on (topological) Ramsey spaces, see Todorcevic's 2010
book, Introduction to Ramsey spaces.
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l11. Infinite-dimensional Structural Ramsey Theory
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KPT Question

Problem 11.2 in [KPT 2005]. Given a homogeneous structure K,

find the right notion of ‘definable set’ so that all definable subsets
of (ﬁ) are Ramsey.

Natasha Dobrinen
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KPT Question

Problem 11.2 in [KPT 2005]. Given a homogeneous structure K,

find the right notion of ‘definable set’ so that all definable subsets
of (ﬁ) are Ramsey.

We assume the universe of K is w so that (ﬁ) is a subspace of [w]“.
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KPT Question

Problem 11.2 in [KPT 2005]. Given a homogeneous structure K,
find the right notion of ‘definable set’ so that all definable subsets
of (ﬁ) are Ramsey.

We assume the universe of K is w so that (ﬁ) is a subspace of [w]“.

Constraint: Big Ramsey degrees.

Must fix a big Ramsey structure and work on subcopies
(embeddings) of it.

The right theorem should directly recover exact big Ramsey
degrees.

Natasha Dobrinen Infinite Structural Ramsey Theory Notre Dame



Infinite-Dimensional Ramsey Theory for the Rado graph

Theorem (D. 2019)

Fix an enumeration of the Rado graph and let U be its coding tree.
Then the space of all subcopies of that coding tree has the property
that all Borel sets are Ramsey.

hm o T

BKD 4:” - -be‘b’m(leh SubS'H‘u_c.Lu‘,-eS_

oy tinmad k4o be tohd fi developerg
o0 - W S'{-fu,C‘(‘WWLQ K T,
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Infinite-Dimensional Ramsey Theory for the Rado graph

G"alv?f\ - Pr?kr/ owm.(ag«a.e_
Theorem (D. 2019)

Fix an enumeration of the Rado graph and let U be its coding tree.

Then the space of all subcopies of that coding tree has the property
that all Borel sets are Ramsey.

C.N, 'Sz

Tn 2%
= Rodo
g erh

Natasha Dobrinen

Infinite Structural Ramsey Theory

Notre Dame 30/52



Infinite-Dimensional Ramsey Theory for the Rado graph

Fiv om tossmaraliel Radograph R. Aok Shetls cobgire
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Recall ‘diaries’ = diagonal antichain plus possibly more
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Infinite-Dimensional Ramsey Theory for SDAP™ structures

Theorem (D. 2022)

Let K be a Fraissé structure satisfying SDAP* with finitely many
relations of arity at most two. Let A be a good diary representing K.
Then every Borel subset of R(A) is completely Ramsey.

Examples: Rado graph, k-partite graphs, ordered versions.

Proof follows Galvin-Prikry but uses forcing for a stronger Pigeonhole
and a new style of combinatorial forcing.

If K has a certain amount of rigidity, Axiom A.3(2) of Todorcevic also
holds, so we obtain analogues of Ellentuck’s Theorem.

Examples: The rationals, Q,, Qq.
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Infinite-Dimensional Ramsey Theory for SDAP™ structures

ordered Rade g"aft\

< M'A‘C&M S'F///
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Natasha Dobrinen Infinite Structural Ramsey Theory Notre Dame



We wanted to see if we could get a stronger oo-dimensional theorem
for the Rado graph, and also extend to k-clique-free graphs and FAP
more generally.
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Infinite-dimensional Ramsey Theory

Theorem (D.—Zucker)

Fix a finitely constrained binary free amalgamation class K and let
K = Flim(KC). Then K has infinite-dimensional Ramsey theory which
directly recovers exact big Ramsey degrees in (BCDHKVZ 2021).

The strength of the theorem ranges from ‘Souslin-measurable sets are
Ramsey' (more than a Silver theorem analogue) to an analogue of the
Ellentuck Theorem.
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Abstract Ramsey Theorem

Theorem (Todorcevic)

Suppose that (R, S, <, <) with finite restriction maps satisfying
axioms A.1-A.4, and that S is closed. Then the field of S-Ramsey
subsets of R is closed under the Souslin operation and it coincides
with the field of S-Baire subsets of R.

When R = 8, this theorem implies the Abstract Ellentuck Theorem.

Theorem (D.—Zucker)

The conclusion of the above theorem still holds when axiom A.3(2)
is replaced by the weaker existence of an A.3(2)-ideal.
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S-Baire and S-Ramsey sets

For X € § and a a finite approximation to some member of R,

[a,X] ={A€eR:A<g X and aC A}

A set X C R is S-Baire if for every non-empty basic open set [a, X]
thereisan aC b€ AR and Y < X in S such that [b, Y] # () and
[b,Y] C X or [b, Y] C X©.

S-Ramsey requires b = a and Y € [depthx(a), X].
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Axioms for Ramsey Spaces

(R, S, <,<x) and finite restrictions maps;
<CSxSand <p CRxS.

A.1 (Sequencing) For any choice of P € {R,S},
(1) Mo = N for all M, N € P,
(2) M # N implies that M|, # N|, for some n,
(3) M|m = NJ, implies m = n and M|, = N|, for all k < m.

A.2 (Finitization) There is a transitive, reflexive relation
<fn € AS x AS and a relation <X C AR x AR which are
finitizations of the relations < and <%, meaning that the
following hold:
(1) {a:a<F x}and {y:y <gn x} are finite for all x € S,
(2) X <Y iff Ym 3n such that X|, <an Y|n,
(3) A<g X iff Ym 3n such that A|,, <R X|,,
(4) Vae AR Vx,y € AS [a <E x <any — a<E y],
(5) Va,be ARVx € AS [aC band b<F x — Jy Cx a<F yl.
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Todorcevic's Axioms 3 and 4 for Ramsey Spaces

A.3 (Amalgamation)
(1) Yae AR VY € S,

[d = depthy(a) < oo — VX € [d, Y] ([a, X] # 0)],
(2) Vae AR VX, Y € S8, letting d = depthy(a),

[X<Yand[a,X]#£0 — 3Y' e[d, Y] ([a Y] C [aX])].

A.4 (Pigeonhole) Suppose a € ARy and O C ARy 1. Then for
every Y € S such that [a, Y] # 0, there exists X € [Y]q, Y],
where d = depthy (a), such that the set {A|x11: A € [a, X]} is
either contained in O or is disjoint from O.
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A.3(2)-ideals

Anideal Z C S x § is a set satisfying
e (X, Y)eZI=X<Y.
e (X, Y)eZand Z< X = (Z,Y) €T

T is an A.3(2)-ideal if additionally
o YYES Vn<w IY'ES with (Y, Y) €T and Y'|, = Y]..

o If (X,Y) €T and a€ AR?Y, thereis Y’ € S with
Y’ € [depthy(a),Y], (Y, Y) €Z, and [a, Y'] C [a, X].

Question. Are A.3(2)-ideals necessary?
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Diaries and Forcing A.4
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Diaries and Forcing A.4
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V. More Directions

e Non-forcing proofs.
e Higher arities.

Infinite-dimensional structural Ramsey theory.

e Computability Theory and Reverse Mathematics.
e Topological dynamics correspondence.

@ When exactly does K having small Ramsey degrees imply
Flim(/C) has finite big Ramsey degrees?

e What amalgamation or other properties of K correspond to the
characterization of its big Ramsey degrees?
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I\VV. Open Problems
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I\VV. Open Problems
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V. Open Problems
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Thank you very much!
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Thank you very much!

Go prove some cool theorems!
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